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Input data
Output data
AI/ML DL system

Machine Learning (ML) very summarized

A diagram of what AI/ML does after all
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How’s the input data of a ML system?

Data types: attributes, signal/sound, image (2D/3D), video...

Labeled or not?

Yes: Supervised Learning (SL)
No: Unsupervised Learning (UL)
Just a bit: Semisupervised Learning (SSL)
What’s that?: Reinforcement Learning (RL)
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Input data processing

1 Data normalization X

2 Extract useful/well known features :S

Image: moments, SIFT, HOG, SURF...
Signal: Fourier, Wavelets...
Text: bag of words, TfIdf vectors...
Genomics: differential expression tests, SNP association tests

3 Problem: losing potentially useful information

Solution 1: use several features (multi-view / multi-feature)
Solution 2: use the whole data (sensory data)
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Desired output: ML tasks

SL: classification, regression...

UL: dimensionality reduction, clustering...

Both: novelty or anomaly detection

RL: game playing, auto driving, robotics

Structured data generation (image, text, translations...)
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What’s inside the AI/ML box?

Machine learning

Train on some data, build a model, apply it on new data

Other ML methods

PCA, SVM, K-means, logistic regression, LME, tSNE.............

Deep learning

Evolution of neural networks

Big family of methods, applications and architectures

”Component” philosophy
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ML concepts: supervised case

Train/validation/test protocol

Error types

Train error (underfitting)

Validation error (overfitting)

Test error (6= distribution)

Human error :o
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Deep learning concepts

Neural networks (metaphor)

Now we have huge datasets

Now we have powerful hardware

Deep architectures deliver much better performance

Theoretical improvements (optimization)

Not extensively exploited in Bioinfo!
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A simple (but complete) example neural network

Inputs ∗ weights capture interactions between input variables.
Enough hidden units allow to model any Borel-measurable function.
Not deep yet!
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Training a NN: two stages (1)

Forward propagation

1 Initialize weights and biases with random (small < 0.1) values

2 Feed train data on the inputs (later: epochs, batches)

3 Compute the inputs to the hidden units zi = W T
i h + bi

4 Compute the activation function g1(z) of each hidden unit

5 Feed the activation values to the output unit(s)

6 Compute the inputs to the output unit(s) zj = W T
j h + bj

7 Compute the activation function of each output unit g2(z)
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Training a NN: two stages (2)

Backpropagation

Goal: adjust weights and biases to make the output as close as the
expected as possible.

1 Let θ ∈ Rd be all the parameters of the NN (weights + biases)

2 Cost function J(θ): usually the error/loss between the
outputs of the NN and the expected outputs

3 Adjust θ using Gradient Descent optimization

θ = θ − η∆∇θJ(θ)

η is the learning rate (step size)

4 Possibly re-run the NN with new or shuffled train data
(epoch)
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Gradient Descent (GD): considerations

Learning rate: yet another hyperparameter

Tradeoff: large step (overstepping) vs small step (slow learning)

Decreasing η

Momentum / Nesterov momentum

Adagrad / RMSProp / ADAM

Granularity of gradient updates

Batch GD. All train examples per update. Expensive

Stochastic GD. One (random) example per update. High
variance

Mini-batch GD. Some (power of 2) examples per update.
Best option

samir.kanaan@upc.edu Introduction to Deep Learning



Teaser
The Big Picture

Deep Learning principles
Architecture

Resources

Introduction
Example neural network
Unit types
Regularization

Gradient Descent (GD): considerations

Learning rate: yet another hyperparameter

Tradeoff: large step (overstepping) vs small step (slow learning)

Decreasing η

Momentum / Nesterov momentum

Adagrad / RMSProp / ADAM

Granularity of gradient updates

Batch GD. All train examples per update. Expensive

Stochastic GD. One (random) example per update. High
variance

Mini-batch GD. Some (power of 2) examples per update.
Best option

samir.kanaan@upc.edu Introduction to Deep Learning



Teaser
The Big Picture

Deep Learning principles
Architecture

Resources

Introduction
Example neural network
Unit types
Regularization

Output units

General considerations

Type depends on the task type

Must not saturate easily (i.e. give meaningful gradients)

Easy to optimize (≈linear), compatible with cost function

Cost function: cross-entropy

C = − 1
|x |

∑
x

(y ln ŷ + (1− y) ln(1− ŷ))

ŷ : output of the NN; y : expected output; x : training samples

Regression (Gaussian) → linear unit

Binary classification (Bernoulli) → sigmoid unit

Multiclass classif. (Multinoulli) → softmax units (one unit
per class, outputs sum 1, initially fuzzy)
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Hidden and input units

General considerations

Basically hidden ≡ input

Easy to optimize (but not necessarily differentiable
everywhere)

Desirable ≈ linear behaviour

Logistic sigmoid / hyperbolic tangent → deprecated*

Rectified Linear Unit (ReLU) → best: g(z) = max{0, z}
Maxout → good for some problems

Split input in blocks
Pick the highest input as output
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How can we reduce the validation error?

Use more train data (I wish I had it!)

Data augmentation

Data synthesis
Add noise: input data, weights of hidden layers, outputs

Parameter normalization (L1 or L2)

Early stopping (train error stable, validation error grows)

Dropout: randomly deactivate units
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DL architectures
Tuning the architecture

Multi-layer perceptron / feed-forward NN

Tasks: regression, classification

The outputs of one layer are the inputs of the next (no loops)

Totally connected (dense) layers by default

Efficient, easy to optimize
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DL architectures
Tuning the architecture

Convolutional neural networks

Tasks: image processing (locally-structured data)

Convolutional layers: specialized filters

Pooling layers: reduce size (can be maxout)

Parameter sharing: same filters applied to whole input (dim.
reduction, no overfitting)
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CNN filters in action
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Autoencoders

Tasks: dimensionality reduction, noise filtering

Output = input. Weird!!

Trick: middle layer(s) are smaller than input, so a
”compressed” representation is forced
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Autoencoder vs PCA

.

First row: original image; second row: autoencoder representation;
third row: PCA reconstruction
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Recurrent neural networks

Tasks: sequence (signal) processing

There are loops and/or units with memory

Harder to optimize/computationally more expensive

Long-short term memory (LSTM): very effective
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Generative adversarial networks

Tasks: data generation

One network (generative) trying to cheat the other
(discriminative)

Can create lifelike images/others
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How many hidden layers? How wide?

Layer width: combinatorial, no generalization

Deeper net (more hidden layers): layers extract advanced
features from the previous ones (better generalization)

How to decide? (This is an art)

Train error: increase width and depth
Validation error: increase depth
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DL libraries

Theano

Tensorflow

Caffe

Lasagne*

Keras*

CNTK

dl4j

...
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Example: CNN on MNIST using Keras
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Where do you train your DL experiments?

CPU: sloooow

GPU: mainstream, really fast

FPGA: ???

Multi-core CPUs: ???
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About to finish, so...

Any questions?
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