Introduction to R: Part VI
An Economics Data Session

Alexandre Perera i Lluna 1,2

1Centre de Recerca en Enginyeria Biomèdica (CREB)
Departament d’Enginyeria de Sistemes, Automàtica i Informàtica Industrial (ESAII)
Universitat Politècnica de Catalunya
mailto:Alexandre.Perera@upc.edu

2Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina
(CIBER-BBN)

Jan 2011 / Introduction to R
Universitat Rovira i Virgili
Contents I

1. Penn World Table Data
 - Finding Variables
 - Variable Names
 - Dataset Content

2. First Computations
 - GDP in G8 and Spain

3. Regression

4. Principal Component Analysis
The Penn World Table (PWT) displays a set of national accounts economic time series covering many countries.

It also provides information about relative prices within and between countries, as well as demographic data and capital stock estimates.

The Table contains data on about 30 variables for about 167 countries over some or all the years 1950-98.

R has PWT on the package `pwt`, in order to retrieve we first should install the package, then:

```r
> install.packages(pwt)
> library(pwt)
```
Penn World Table Session

> help(package=pwt)

Package: pwt
Version: 6.3-0
Date: 2009-10-15
Title: Penn World Table
Author: Achim Zeileis, Guan Yang
Maintainer: Achim Zeileis <Achim.Zeileis@R-project.org>
Description: The Penn World Table provides purchasing power parity and national income accounts converted to international prices for 189 countries for some or all of the years 1950-2007.
License: GPL-2
Repository: CRAN
Date/Publication: 2009-10-14 22:32:00
Built: R 2.11.0; ; 2010-04-23 15:24:46 UTC; unix

Index:

pwt5.6 Penn World Table 5.6
pwt6.1 Penn World Table 6.1
pwt6.2 Penn World Table 6.2
pwt6.3 Penn World Table 6.3
First, let’s be familiar with our dataset.

```r
> d <- pwt6.3
> dim(d)
[1] 11020 36
> names(d)
[1] "country"   "isocode"   "year"     "pop"
[5] "xrat"      "currency"  "ppp"      "cgdp"
[9] "cc"        "cg"        "ci"       "p"
[13] "pc"        "pg"        "pi"       "openc"
[17] "cgnp"      "y"         "yeks"     "ycpdw"
[21] "rgdpl"     "rgdpl2"    "rgdpch"   "rgdptt"
[25] "openk"     "kc"        "kg"       "ki"
[29] "rgdpeqa"   "rgdpwok"   "rgdpl2wok" "rgdpl2pe"
[33] "rgdpl2te"  "rgdpl2th"  "grgdpch"  "rgdpl2"  
```
PWT Main Variable Names I

- pop: population
- xrat: Exchange rate
- ppp: Purchasing power partity
- cgdjp: Real Gross domestic product per capita
 - cc: Consumption Share of CGDP
 - ci: Investment Share of CGDP
 - cg: Government Share of CGDP
 - cnfb: Net Foreign Balance
- year
- country

- pg: Price Level of Government
- p: Price Level of Gross domestic product
- pc: Price Level of Consumption
- pi: Price Level of Investment
- openc: Openness
- cgnp: Gross National Product
- csave: Current Savings
- y: GNP Relative to the United States (US=100)
- rgdpl: Real GDP per capita (Laspeyres)
PWT Main Variable Names II

- rgdpch: Real GDP per capita (Chain)
- rgdpeqa: Real GDP chain per equivalent adult
- rgdpwok: Real GDP chain per worker
- rgdptt: Adjustment ofr changes in the Terms of Trade
- openk: Openness
- kc: Consumption Share of RGDPL
- kg: Government Share of RGDPL
- ki: Investment Share of RGDPL
- knfb: Net Foreign Balance: KNFB
- KapW Capital Stock per Worker
- KapD: Producers Durables
- KapNR: Non Residential Construction (% of Capital Stock)
- KapO: Other Construction (% of Capital Stock)
- KapR: Residential Construction (% of Capital Stock)
- KapT: Transport Equipment (% of Capital Stock)
- STLIV: Standard of Living
- KNDP: Net Domestic Product
- GRGDPCH: Growth Rate of RGDPCH
Dataset description: Countries

```r
> class(d$country)
[1] "factor"
> nlevels(d$country)
[1] 190
> head(levels(d$country))
[1] "Afghanistan"  "Albania"    "Algeria"     "Angola"     
[3] "Antigua and Barbuda" "Argentina"  "Argentina"  "Argentina"  
[5] "Antigua and Barbuda" "Argentina"  "Antigua and Barbuda" "Argentina"
> tail(levels(d$country))
[1] "Vanuatu"       "Venezuela"   "Vietnam"    "Yemen"      
[3] "Zambia"        "Zimbabwe"   "Zimbabwe"   "Zimbabwe"  
[5] "Zambia"        "Zimbabwe"   "Zimbabwe"   "Zimbabwe"
> (spain <- which(d$country == "Spain"))
 [1] 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048
```
> unique(d$year)

[51] 2000 2001 2002 2003 2004
[56] 2005 2006 2007

> plot(d$year[spain],
 d$pop[spain],
 xlab="year",
 ylab=expression(plain(population)*(10^3)),
 type='l')
Gross Domestic Product per capita (Spain)

```r
> plot(d$year[spain], d$cgdp[spain], xlab = "year",
+     ylab = "Gross Domestic Product (Spain)",
+     type = "l")
```
Gross Domestic Product per capita (G8+Spain)

```r
> g8 <- c("Canada", "Italy", "France", "Germany", 
+   "Japan", "Russia", "United States of America", 
+   "United Kingdom", "Spain")
> cols <- c("black", "red", "green", "blue", 
+   "yellow", "cyan", "gray", "magenta", 
+   "brown")
> attach(d, warn.conflicts = FALSE)
> plot(year[country %in% g8], cgdp[country %in%
+   g8], pch = 21, bg = cols[match(d$country[d$country %in%
+   g8], g8)])
> legend("topleft", legend = g8, pch = 21,
+   pt.bg = cols)
```
Gross Domestic Product per capita (G8+Spain)
Mean Gross Domestic Product in past 50 years

Question

Which has been the mean gross domestic product per capita in all years in the G8+Spain?

```r
> by(d$cgdp, d$country, mean)[g8]

<table>
<thead>
<tr>
<th>Country</th>
<th>Mean GDP per Capita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>12339.937</td>
</tr>
<tr>
<td>Italy</td>
<td>10659.572</td>
</tr>
<tr>
<td>France</td>
<td>11063.889</td>
</tr>
<tr>
<td>Germany</td>
<td>NA</td>
</tr>
<tr>
<td>Japan</td>
<td>11501.853</td>
</tr>
<tr>
<td>Russia</td>
<td>NA</td>
</tr>
<tr>
<td>United States of America</td>
<td>15433.164</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>10761.944</td>
</tr>
<tr>
<td>Spain</td>
<td>9388.628</td>
</tr>
</tbody>
</table>
```

Alexandre Perera i Lluna

Introduction to R: Part VI
Question

Which has been the mean gross domestic product per capita in all years in the G8+Spain?

> by(d$cgdp, d$country, mean)[g8]

d$country

<table>
<thead>
<tr>
<th></th>
<th>Mean GDP per Capita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>12339.937</td>
</tr>
<tr>
<td>France</td>
<td>11063.889</td>
</tr>
<tr>
<td>Japan</td>
<td>11501.853</td>
</tr>
<tr>
<td>United States of America</td>
<td>15433.164</td>
</tr>
<tr>
<td>Spain</td>
<td>9388.628</td>
</tr>
<tr>
<td>Italy</td>
<td>10659.572</td>
</tr>
<tr>
<td>Germany</td>
<td>NA</td>
</tr>
<tr>
<td>Russia</td>
<td>NA</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>10761.944</td>
</tr>
</tbody>
</table>
Dealing with NA’s

> cgdp[country == "Germany"]

```
[1] NA   NA   NA   NA   NA
[5] NA   NA   NA   NA   NA
[9] NA   NA   NA   NA   NA
[13] NA  NA   NA   NA   NA
[17] NA  NA   NA   NA   NA
[21] 3808.967 4105.509 4426.771 4831.593
[29] 7860.196 8859.355 9727.715 10354.658
[33] 10932.733 11609.992 12215.551 12872.955
[37] 13953.899 14763.932 15792.964 16818.171
[41] 18246.479 19609.792 20491.730 20591.520
[45] 21432.337 22256.316 22603.238 23049.579
[49] 23689.091 24529.103 25502.508 26361.604
[53] 26867.506 27486.528 28475.380 29547.739
[57] 31291.090 33181.091
```

> all(!is.na(cgdp[country == "Germany"]))

[1] FALSE

> all(!is.na(cgdp[country == "Spain"]))

[1] TRUE
Dealing with NA’s

```r
> by(cgdp, country, function(x) mean(x, +   na.rm = TRUE))[g8]

country                  
Canada 12339.937             Italy 10659.572
 France 11063.889            Germany 16647.981
   Japan 11501.853          Russia  8510.398
United States of America 15433.164 United Kingdom 10761.944
   Spain  9388.628
```
Which has been the mean gross domestic product per capita in the past 10 years in the G8+Spain?

```r
> by(cgdp[year > 1990], country[year > 1990],
+   function(x) mean(x, na.rm = TRUE))[g8]

  country[year > 1990]  mean
  Canada               26053.526 23282.679
  France               23493.737 25115.656
  Japan                25499.364  8451.076
  United States of America  33294.899 23517.539
  Spain                21539.701
```
Which has been the mean gross domestic product per capita in the past 10 years in the G8+Spain?

```r
> by(cgdp[year > 1990], country[year > 1990],
+     function(x) mean(x, na.rm = TRUE))[g8]

country[year > 1990]

Canada                      Italy
26053.526                   23282.679
France                      Germany
23493.737                   25115.656
Japan                       Russia
25499.364                   8451.076
United States of America    United Kingdom
33294.899                   23517.539
Spain                       
21539.701
```
Could we predict the exchangerate (xrat) given:

- population (pop)
- Gross Domestic Product per capita (cgdp)
- Purchasing Power Parity (ppp)
- Openness (openc)

```r
> mod <- lm(xrat ~ pop + cgdp + ppp + openc, +    subset = spain)
```
Could we predict the exchangerate (xrat) given:

- population (pop)
- Gross Domestic Product per capita (cgdp)
- Purchasing Power Parity (ppp)
- Openness (openc)

```r
> mod <- lm(xrat ~ pop + cgdp + ppp + openc,
+          subset = spain)
```
Regression

> summary(mod)

Call:
 lm(formula = xrat ~ pop + cgdp + ppp + openc, subset = spain)

Residuals:
 Min 1Q Median 3Q Max
-0.147923 -0.037132 0.007242 0.028070 0.205417

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.213e+00 2.279e-01 5.323 2.11e-06 ***
 pop -4.488e-05 8.410e-06 -5.337 2.01e-06 ***
 ppp 1.620e+00 1.809e-01 8.954 3.46e-12 ***
 openc 2.001e-02 2.342e-03 8.545 1.53e-11 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.06791 on 53 degrees of freedom
Multiple R-squared: 0.9384, Adjusted R-squared: 0.9337
F-statistic: 201.8 on 4 and 53 DF, p-value: < 2.2e-16
Linear Regression Residuals

> layout(matrix(c(1, 2, 3, 4), 2, 2))
> plot(mod)
Data Standardization

Standardization

All variable k to have $\mu_k = 0$ and $\sigma_k = 1$.

```r
> s <- d[spain, ]
> data <- as.data.frame(scale(s[, c("xrat", "pop", "cgdp", "ppp", "openc")]))
> names(data) <- c("sxrat", "spop", "scgdp", "sppp", "sopenc")
> s <- cbind(s, data)
> names(s)

[1] "country" "isocode" "year" "pop" "xrat"
[6] "currency" "p" "cgdp" "pc"
[11] "ci" "ppp" "y" "rgdpch"
[16] "openc" "kg" "ri" "rgdpch"
[21] "rgdpl" "pi" "rgdptt" "rgdpeqa"
[26] "kc" "yeks" "rgdpwok"
[31] "rgdpl2wok" "rgdp2te" "rgdpl2th"
[36] "rgdpl2pe" "sgdp" "grgdpch"
[41] "sopenc"
```

Introduction to R: Part VI
> mod2 <- lm(sxrat ~ spop + scgdp + sppp + sopenc, data = s)
> summary(mod2)

Call:
lm(formula = sxrat ~ spop + scgdp + sppp + sopenc, data = s)

Residuals:
 Min 1Q Median 3Q Max
-0.56074 -0.14076 0.02745 0.10640 0.77868

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.255e-16 3.380e-02 9.63e-15 1
spop -7.081e-01 1.327e-01 -5.337 2.01e-06 ***
scgdp -1.174e+00 1.417e-01 -8.285 3.93e-11 ***
sppp 1.545e+00 1.726e-01 8.954 3.46e-12 ***
sopenc 1.207e+00 1.413e-01 8.545 1.53e-11 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2574 on 53 degrees of freedom
Multiple R-squared: 0.9384, Adjusted R-squared: 0.9337
F-statistic: 201.8 on 4 and 53 DF, p-value: < 2.2e-16

> detach(d)
Country variance analysis

```r
> d2007 <- d[d$year == 2007, c("xrat", "pop", "cgdp", "ppp", + "openc")]
> countries <- d$country[d$year == 2007]
> mod <- prcomp(~., data = d2007, na.action = na.exclude, +   center = TRUE, scale = TRUE)
> summary(mod)

Importance of components:

          PC1   PC2   PC3   PC4   PC5
Standard deviation 1.234 1.061 0.960 0.873 0.815
Proportion of Variance 0.305 0.225 0.184 0.153 0.133
Cumulative Proportion 0.305 0.530 0.714 0.867 1.000
```
> library(pls)
> scoreplot(mod, labels = countries)

> coun <- which(is.na(rowMeans(d2007)))
> countries[coun]

[1] Bahrain Serbia
190 Levels: Afghanistan Albania Algeria Angola ... Zimbabwe

> d2007 <- d2007[-coun,]
> countries <- countries[-coun]
> library(mvoutlier)
> outs <- aq.plot(d2007, quan = 1)

Projection to the first and second robust principal components.
Proportion of total variation (explained variance): 0.9682581

> table(outs$outliers)

FALSE TRUE
 164 24

> d2007 <- d2007[!outs$outliers,]
> countries <- countries[!outs$outliers]
Removing outliers

```
> mod <- prcomp(d2007, center = TRUE, scale = TRUE)
> summary(mod)

Importance of components:
                        PC1   PC2   PC3   PC4   PC5
Standard deviation   1.434 1.155 0.945 0.772 0.3476
Proportion of Variance 0.411 0.267 0.179 0.119 0.0242
Cumulative Proportion  0.411 0.678 0.857 0.976 1.0000
```
Removing outliers

> scoreplot(mod$x[, 1:2], labels = countries)
> di <- dist(scale(d2007))
> h <- hclust(di)
> memb <- cutree(h, k = 6)
> sp <- which(countries == "Spain")
> idgrup <- which(memb == memb[sp])
> countries[idgrup]

[1] Antigua and Barbuda Australia Austria
[4] Bahamas Barbados Belgium
[7] Bermuda Brunei Canada
[10] Cyprus Denmark Finland
[13] France Germany Greece
[16] Iceland Ireland Israel
[19] Italy Kazakhstan Kuwait
[22] Libya Macao Mauritius
[25] Netherlands New Zealand Norway
[28] Oman Portugal Puerto Rico
[31] Saudi Arabia Slovenia Spain
[34] Sweden Switzerland Taiwan
[37] Trinidad & Tobago United Arab Emirates United Kingdom
190 Levels: Afghanistan Albania Algeria Angola ... Zimbabwe
Clustering

```r
> rownames(d2007) <- countries
> di <- dist(scale(d2007[idgrup, ]))
> h <- hclust(di)
> plot(h)
```

Cluster Dendrogram
End Part VI