
Python in a Nutshell
Part III: Introduction to SciPy and SimPy

Manel Velasco,1 PhD and Alexandre Perera,1,2 PhD

1Departament d’Enginyeria de Sistemes, Automatica i Informatica Industrial
(ESAII)

Universitat Politecnica de Catalunya

2Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y
Nanomedicina (CIBER-BBN)

Alexandre.Perera@upc.edu Manel.Velasco@upc.edu

Introduction to Python for Engineering and Statistics
Febraury, 2013

mailto:Alexandre.Perera@upc.edu
mailto:manel.velasco@upc.edu

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Contents I

1 Introduction
Input/Output

2 Statistics
First statistics
Probability Distributions
Density Estimation
Statistical Testing

3 Some Calculus
Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

4 Storage Schemes and code profiling
Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Contents II

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

5 SymPy
First Steps with SimPy
Algebraic manipulations
Calculus
Equation solving
Linear Algebra

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Input/Output

SciPy

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Input/Output

Scipy

Up to now:

python A general purpose programming language. It is
interpreted and dynamically typed and is very suited
for interactive work and quick prototyping, while being
powerful enough to write large applications in.

Numpy A language extension that defines the numerical array
and matrix type and basic operations on them.

matplotlib A language extension to facilitate plotting.

Scipy Scipy is another language extension that uses numpy to
do advanced math, signal processing, optimization,
statistics and much more.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Input/Output

Scipy

Up to now:

python A general purpose programming language. It is
interpreted and dynamically typed and is very suited
for interactive work and quick prototyping, while being
powerful enough to write large applications in.

Numpy A language extension that defines the numerical array
and matrix type and basic operations on them.

matplotlib A language extension to facilitate plotting.

Scipy Scipy is another language extension that uses numpy to
do advanced math, signal processing, optimization,
statistics and much more.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Input/Output

Scipy

Up to now:

python A general purpose programming language. It is
interpreted and dynamically typed and is very suited
for interactive work and quick prototyping, while being
powerful enough to write large applications in.

Numpy A language extension that defines the numerical array
and matrix type and basic operations on them.

matplotlib A language extension to facilitate plotting.

Scipy Scipy is another language extension that uses numpy to
do advanced math, signal processing, optimization,
statistics and much more.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Input/Output

Scipy

Up to now:

python A general purpose programming language. It is
interpreted and dynamically typed and is very suited
for interactive work and quick prototyping, while being
powerful enough to write large applications in.

Numpy A language extension that defines the numerical array
and matrix type and basic operations on them.

matplotlib A language extension to facilitate plotting.

Scipy Scipy is another language extension that uses numpy to
do advanced math, signal processing, optimization,
statistics and much more.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Input/Output

History of SciPy

1995 first, there was Numeric, developed by Jim Hugunin

2001 Several people used Numeric for writing sientific code.
Travis Oliphant, Eric Jones and Pearu Peterson merged
their modules in one scientific super package: SciPy was
born.

2001-2004 numarray was created by Perry Greenfield, Todd Miller
and Rick White at the Space Science Telescope
Institute as a replacement for Numeric.

2005 Travis Oliphant took Numeric and assambled a multi
dimensional array project SciPy core. Numerix was
born but as there was a DSPs company with the same
name, NumPy was reborn.

2006 Guido and Travis discussed which parts of NumPy
should go into Python standard libraries.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Input/Output

http://scipy.org

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Input/Output

scipi.io

Maybe the most common IO in SciPy is to import and export Matlab
files using loadmat/savemat. In SciPy is easy to write/read them.

>>> import numpy as np

>>> from scipy import io as spio

>>> py_a = np.ones((2,2))

>>> spio.savemat(’ex.mat’,{’mat_a’: py_a})

>>> py_mat = spio.loadmat(’ex.mat’)

>>> py_mat[’mat_a’]

array([[1., 1.],

[1., 1.]])

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Input/Output

scipy.io

scipy.io contains modules, classes and functions to read and write
data to a variety of formats:

Matlab loadmat(file_name[, mdict, appendmat])

savemat(file_name[, mdict, appendmat])

Matrix Market http://math.nist.gov/MatrixMarket/

mminfo(), mmread() and mmwrite()

Wav Through scipy.io.wavfile.

read(), write(file, rate, data)

WEKA ARFF is a text file format which support numerical,
string and data values, with support of missing and
sparse data.

loadarff() from arff module

Netcdf Through scipy.io.netcdf

netcdf_file(filename[, mode, mmap, version])

Velasco and Perera Python in a Nutshell

http://math.nist.gov/MatrixMarket/

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

Statistics

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

Statistics

scipy.stats

Contains statistical tools and probabilistic description of random
processes.

numpy.random

Contains random number generators for various random process.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

Statistics

scipy.stats

Contains statistical tools and probabilistic description of random
processes.

numpy.random

Contains random number generators for various random process.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

Main Stats functions

scipy.mean()

scipy.var()

scipy.std()

scipy.median()

scipy.scoreatpercentile()

stats.describe()

stats.mode()

stats.moment()

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

Probability Distributions

Scipy has functions that deal with several common probability
distributions.

Currently there are 81 continuous probability distributions and
10 discrete distributions.

These are defined in the scipy.stats sub-package.

This package also defines several statistical functions.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

Prob Distributions

Continuous PDFs

norm Normal or Gaussian

chi2 Chi-squared

t Student’s T

uniform Uniform

Discrete PDFs

binom Binomial

poisson Poisson

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

Working with PDFs I

There are two ways of using probability distribution functions:

Generate a frozen distribution object and then work with the
methods of this object.

>>> from scipy import stats

>>> N = stats.norm(loc=1, scale=0.5)

We can then draw random numbers that follow the distribution
we just defined:

>>> N.rvs(10)

array([1.26041313, 2.05286423, 0.50953812, 0.83991445, 0.69666132,

0.59828645, 0.90758433, 0.94395294, 1.13686641, 1.04722609])

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

Working with PDFs II

Alternatively:

Use functions in the appropriate class by always passing the
parameters that define the distribution, when calling functions
associated with the distribution.

For example, to draw a random number from a Gaussian or
Normal distribution with mean = 2 and standard deviation = 0.2
we can write:

>>> from scipy import stats

>>> stats.norm.rvs(loc=2, scale=0.2, size=3)

array([1.7615373 , 1.91174333, 2.18555173])

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

stats.describe()

>>> from scipy import stats

>>> R = stats.norm.rvs(loc = 1, scale=0.5, size=1000)

>>> n, min_max, mean, var, skew, kurt = stats.describe(R)

>>> print("Number of elements: {0:d}".format(n))

Number of elements: 1000

>>> print("Minimum: {0:8.6f} Maximum: {1:8.6f}".format(min_max[0], min_max[1]))

Minimum: -0.302407 Maximum: 2.508948

>>> print("Mean: {0:8.6f}".format(mean))

Mean: 0.985060

>>> print("Variance: {0:8.6f}".format(var))

Variance: 0.247292

>>> print("Skew : {0:8.6f}".format(skew))

Skew : 0.058949

>>> print("Kurtosis: {0:8.6f}".format(kurt))

Kurtosis: -0.237082

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

Working with PDFs III

Similarly, the value of the PDF at any value of the variate can be
obtained using the function pdf of the concerned distribution,

>>> stats.norm(1,loc=2,scale=0.2)

<scipy.stats.distributions.rv_frozen object at 0x30f2ad0>

We can also pass an array of values to this function, to get the PDF
at the specified values of the variate:

>>> N = stats.norm(loc=2, scale=0.2)

>>> N.pdf([-1,2])

array([2.76535477e-49, 1.99471140e+00])

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

Multivariate random processes

Multivariate Random Processes

Are provided by the np.random.multivariate family.

Could you create and plot a multivariate normal with:

~µ = (0, 0) (1)

Σ =

(
1 0.5

0.5 1

)
(2)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

Solution

mean = [0,0]

cov = [[1,0.5],[0.5,1]]

import matplotlib.pyplot as plt

x,y = \

np.random.multivariate_normal(\

mean,cov,500).T

plt.plot(x,y,’bo’)

plt.axis(’equal’)
4 2 0 2 44

3

2

1

0

1

2

3

4

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

Density Estimation

Let’s generate a random process and estimate its probability density
function (PDF):

>>> x = np.random.normal(size=2000)

>>> cuts = np.arange(-6,6)

>>> cuts

array([-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5])

>>> hist = np.histogram(x, bins=cuts, normed=True)[0]

>>> bins = (cuts[1:] + cuts[:-1])/2.

>>> bins

array([-5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5])

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

Density Estimation

from scipy import stats

import matplotlib.pyplot as pl

x_pdf = stats.norm.pdf(bins)

pl.plot(bins,hist)

pl.plot(bins,x_pdf)

6 4 2 0 2 4 60.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

Exercise

Exercise

Generate a realization of 1000 samples following a Poisson
distribution with a parameter of your choice.

Search for the Poisson methods documentation. Can you
estimate the parameter of your own distribution?

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

Solution

Poisson Probability Mass Distribution

fPoiss(λ) =
λke−λ

k!
(3)

λ = E(X) (4)

>>> from pylab import plot,show,hist,figure,title

>>> from scipy.stats import poisson

>>> mu = 2.4

>>> R = poisson.rvs(mu, loc=0, size=1000)

>>> print("Mean: {0:1.2f}".format(R.mean()))

Mean: 2.45

Note that there also SciPy variants, scipy.mean(), scipy.std().

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

Fitting

Distribution fitting is the procedure of selecting a statistical
distribution that best fits to a dataset generated by some random
process. In this post we will see how to fit a distribution using the
techniques implemented in the Scipy library.

>>> from scipy.stats import norm

>>> from numpy import linspace

>>> from pylab import plot,show,hist,figure,title

>>>

>>> data = norm.rvs(loc=0, scale=1, size=150)

>>> param = norm.fit(data)

>>> param

(-0.095173366943996918, 1.0003376318003636)

>>> x = linspace(-5,5,100)

>>> pdf_fitted = norm.pdf(x, loc=param[0], scale=param[1])

>>> pdf = norm.pdf(x)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

Fitting

title(’Normal distribution’)

plot(x,

pdf_fitted,’r-’,

x,pdf,’b-’)

hist(data,normed=1,alpha=.3)

6 4 2 0 2 4 60.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45 Normal distribution

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

Statistics made easy

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

Contingency tables

>>> from scipy.stats.contingency import expected_freq

>>> obs = np.array([[10,20,10],[20,20,10]])

>>> obs

array([[10, 20, 10],

[20, 20, 10]])

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

χ2-test

This function computes the chi-square statistic and p-value for the
hypothesis test of independence of the observed frequencies in the
contingency table observed.

>>> from scipy import stats

>>> stats.chi2_contingency(obs)

(2.2499999999999991, 0.32465246735834991, 2, array([[13.33333333, 17.77777778, 8.88888889],

[16.66666667, 22.22222222, 11.11111111]]))

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

Fisher exact test

Example

Say we spend a few days counting whales and sharks in the Atlantic
and Indian oceans. In the Atlantic ocean we find 8 whales and 0
shark, in the Indian ocean 2 whales and 5 sharks. Then our
contingency table is:

Atlantic Indian
whales 8 2
sharks 0 5

>>> oddsratio, pvalue = stats.fisher_exact([[8, 2], [1, 5]])

>>> pvalue

0.034965034965034919

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

t-test

ttest ind()

Calculates the T-test for the means of TWO INDEPENDENT
samples of scores.

>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)

>>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500)

>>> stats.ttest_ind(rvs1,rvs2)

(-0.24783971064054422, 0.8043094102895727)

>>> rvs3 = stats.norm.rvs(loc=7,scale=10,size=500)

>>> stats.ttest_ind(rvs1,rvs3)

(-2.4139498667262616, 0.015959786513326326)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

t-test (matched)

ttest ind()

Calculates the T-test for the means of TWO MATCHED samples.

>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)

>>> rvs2 = (stats.norm.rvs(loc=5,scale=10,size=500) +

... stats.norm.rvs(scale=0.2,size=500))

...

>>> stats.ttest_rel(rvs1,rvs2)

(0.32412677634421311, 0.745977870811666)

>>> rvs3 = (stats.norm.rvs(loc=8,scale=10,size=500) +

... stats.norm.rvs(scale=0.2,size=500))

...

>>> stats.ttest_rel(rvs1,rvs3)

(-2.9250238643536557, 0.0036010776543372864)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

More tests

mannwhitneyu() Computes the Mann-Whitney rank test on samples
x and y.

spearmanr Calculates a Spearman rank-order correlation coefficient
and the p-value.

pearsonr Calculates a Pearson correlation coefficient and the
p-value for testing.

f oneway Performs a 1-way ANOVA.

oneway Test for equal means in two or more samples from the
normal distribution.

normaltest Tests whether a sample differs from a normal
distribution.

kruskal Compute the Kruskal-Wallis H-test for independent
samples.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First statistics
Probability Distributions
Density Estimation
Statistical Testing

Plot tests

probplot Calculate quantiles for a probability plot against a
theoretical distribution.

import scipy.stats as stats

import matplotlib.pyplot as plt

nsample = 100

np.random.seed(7654321)

ax1 = plt.subplot(221)

x = stats.t.rvs(3, size=nsample)

res = stats.probplot(x, plot=plt)

ax2 = plt.subplot(222)

x = stats.t.rvs(25, size=nsample)

res = stats.probplot(x, plot=plt)

ax3 = plt.subplot(223)

x = stats.norm.rvs(loc=[0,5], scale=[1,1.5],

size=(nsample/2.,2)).ravel()

res = stats.probplot(x, plot=plt)

ax4 = plt.subplot(224)

x = stats.norm.rvs(loc=0, scale=1, size=nsample)

res = stats.probplot(x, plot=plt)

3 2 1 0 1 2 3
Quantiles

6
4
2
0
2
4
6
8

Or
de

re
d

Va
lu

es

r^2=0.9616

Probability Plot

3 2 1 0 1 2 3
Quantiles

4
3
2
1
0
1
2
3

Or
de

re
d

Va
lu

es

r^2=0.9954

Probability Plot

3 2 1 0 1 2 3
Quantiles

6
4
2
0
2
4
6
8

10

Or
de

re
d

Va
lu

es

r^2=0.9564

Probability Plot

3 2 1 0 1 2 3
Quantiles

3

2

1

0

1

2

3

Or
de

re
d

Va
lu

es

r^2=0.9944

Probability Plot

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

scipy.linalg

The scipy.linalg module provides standard linear algebra
operations, relying on an underlying efficient implementation (BLAS,
LAPACK). Some of the main functions are:

inv Compute the inverse of a matrix.

pinv Compute the (Moore-Penrose) pseudo-inverse of a
matrix.

solve Solve the equation A ·X = B for X.

det Compute the determinant of a matrix.

norm Matrix or vector norm.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

scipy.linalg

eig Solve an ordinary or generalized eigenvalue problem of
a square matrix (eigh() for complex).

svd Singular Value Decomposition.

orth Construct an orthonormal basis for the range of A
using SVD.

qr Compute QR decomposition of a matrix.

expm Compute the matrix exponential using Pade
approximation.

logm Compute matrix logarithm.

sinm Matrix sin/cos/tan.

cosm e.g. cos(A) = I − 1
2!A

2 + 1
4!A

4 − · · ·
tan

funm Evaluate a matrix function specified by a callable.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

solve()

A · x = b

Given a and b, solve for x.

>>> from scipy import linalg

>>> from numpy import dot

>>> a = np.array([[3,2,0],[1,-1,0],[0,5,1]])

>>> b = np.array([2,4,-1])

>>> x = linalg.solve(a,b)

>>> x

array([2., -2., 9.])

>>> np.dot(a, x)

array([2., 4., -1.])

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

pinv()

pinv()

Calculate a generalized inverse of a matrix using a least-squares solver.

>>> a = np.random.randn(5, 3)

>>> B = linalg.pinv(a)

>>> np.allclose(a, dot(a, dot(B, a)))

True

>>> np.allclose(B, dot(B, dot(a, B)))

True

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

numpy’s allclose()

numpy.allclose()

Returns True if two arrays are element-wise equal within a tolerance.

abs(a− b) ≤ atol + rtol · abs(b) (5)

Relative difference: rtol · abs(b).
rtol Defaults to 1e−5.

atol Defaults to 1e−8.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Singular Value Decomposition

Matrix Decompositions

SVD is commonly used in statistics and signal processing. Many
other standard decompositions (QR, LU, Cholesky, Schur), as well as
solvers for linear systems, are available in scipy.linalg.

>>> Mat = np.arange(9).reshape((3, 3)) + np.diag([1, 0, 1])

>>> uMat, S, vMat = linalg.svd(Mat)

>>> S

array([14.88982544, 0.45294236, 0.29654967])

>>> sMat = np.diag(S)

>>> recMat = uMat.dot(sMat).dot(vMat)

>>> np.allclose(recMat,Mat)

True

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Singular Value Decomposition

Matrix Decompositions

SVD is commonly used in statistics and signal processing. Many
other standard decompositions (QR, LU, Cholesky, Schur), as well as
solvers for linear systems, are available in scipy.linalg.

>>> Mat = np.arange(9).reshape((3, 3)) + np.diag([1, 0, 1])

>>> uMat, S, vMat = linalg.svd(Mat)

>>> S

array([14.88982544, 0.45294236, 0.29654967])

>>> sMat = np.diag(S)

>>> recMat = uMat.dot(sMat).dot(vMat)

>>> np.allclose(recMat,Mat)

True

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Fast Fourier Transforms

Ok, up to this, boring algebra, I need some action!!

FFT through scipy.fftpack

The scipy.fftpack module allows to compute fast Fourier transforms.
In this example we will:

Generate a noisy signal.

Detect a high frequency component (noise).

Filter this noise in Fourier.

Plot the filtered signal.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Fast Fourier Transforms

Ok, up to this, boring algebra, I need some action!!

FFT through scipy.fftpack

The scipy.fftpack module allows to compute fast Fourier transforms.
In this example we will:

Generate a noisy signal.

Detect a high frequency component (noise).

Filter this noise in Fourier.

Plot the filtered signal.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Signal Generation

A typical noisy input may look like the following:

time_step = 0.02

period = 5.0

time_vector = np.arange(0, 20, time_step)

signal = np.sin(2.0 * np.pi * time_vector / period) + \

0.4 * np.random.randn(time_vector.size)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Signal Generation

plt.plot(time_vector, signal)

plt.xlabel(’Time (s)’)

plt.ylabel(’Amplitude’)

0 5 10 15 20
Time (s)

3

2

1

0

1

2

3

Am
pl

itu
de

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

FFT

For convenience, we need to first define a vector with the discrete
Fourier Transform sample frequencies:

>>> from scipy import fftpack

>>> freqs = fftpack.fftfreq(signal.size, d=time_step)

>>> freqs[0:5]

array([0. , 0.05, 0.1 , 0.15, 0.2])

>>> freqs[-5:-1]

array([-0.25, -0.2 , -0.15, -0.1])

And the transformation itself:

>>> sig_fft = fftpack.fft(signal)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

FFT

We can find the peak on the signal as follows. First select positive
frequencies.

>>> ind = np.where(freqs > 0)

>>> freqs_p = freqs[ind]

>>> signal_abs = np.abs(sig_fft)[ind]

Then, where do we find the maximum amplitude ?

>>> fpeak = freqs_p[signal_abs.argmax()]

>>> print fpeak, 1./period

0.2 0.2

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

FFT

Let’s filter the noise above the signal and compute the inverse
transform:

sig_fft[np.abs(freqs) > fpeak] = 0

main_signal = fftpack.ifft(sig_fft)

plt.figure()

plt.plot(time_vector, signal)

plt.plot(time_vector,

main_signal, linewidth=5)

plt.xlabel(’Time [s]’)

plt.ylabel(’Amplitude’)

plt.show()

0 5 10 15 20
Time [s]

3

2

1

0

1

2

3

Am
pl

itu
de

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Challenge!

Let’s consider this noisy
image.https://www.dropbox.com/s/a73c0lla7qdjqiy/orionnebulaN.jpg Download link

Figure: Picture with periodic noise.

Use the 2D FFT implementation in scipy.fftpack to
remove the noise int the picture:

1 Import the image into ipython through
plt.imread()

2 Compute the power spectrum of the Fourier
Transform and plot it.

3 Cut the high-frequency part zeroing the 2D
Fourier Transform matrix.

4 Apply the inverse Fourier transform to
retrieve the original image.

Velasco and Perera Python in a Nutshell

https://www.dropbox.com/s/a73c0lla7qdjqiy/orionnebulaN.jpg

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Optimization

Optimization

Optimization is the problem of finding a numerical solution to a
minimization or equality.

scipy.optimize

The scipy.optimize module provides useful algorithms for:

1 Function minimization (scalar or multi-dimensional)

2 Curve fitting.

3 Root finding.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Optimization

Optimization

Optimization is the problem of finding a numerical solution to a
minimization or equality.

scipy.optimize

The scipy.optimize module provides useful algorithms for:

1 Function minimization (scalar or multi-dimensional)

2 Curve fitting.

3 Root finding.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Finding a Minimum for a Scalar function

Let’s define the following function:

f(x) = x2 + 10sin(x) (6)

def f(x):

return x**2 + 10*np.sin(x)

x = np.arange(-10, 10, 0.1)

plt.plot(x, f(x))

10 5 0 5 1020

0

20

40

60

80

100

120

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Finding a Minimum for a Scalar Function

The general and efficient way to find a minimum for this function is
to conduct a gradient descent starting from a given initial point. The
BFGS algorithm is a good way of doing this:

>>> from scipy import optimize

>>>

>>> optimize.fmin_bfgs(f, 0)

Optimization terminated successfully.

Current function value: -7.945823

Iterations: 5

Function evaluations: 24

Gradient evaluations: 8

array([-1.30644003])

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Brute Force Optimization

But, watch out!

optimize.fmin_tnc(f, 5, disp=0)

array([4.60643939])

In case there is no information on the neighborhood - and therefore
we have no clues on where to set up the initialization - we might need
to search for a global minimum through brute force.

>>> grid = (-10, 10, 0.1)

>>> xmin_global = optimize.brute(f, (grid,))

>>> xmin_global

array([-1.30641113])

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Brute Force Optimization

But, watch out!

optimize.fmin_tnc(f, 5, disp=0)

array([4.60643939])

In case there is no information on the neighborhood - and therefore
we have no clues on where to set up the initialization - we might need
to search for a global minimum through brute force.

>>> grid = (-10, 10, 0.1)

>>> xmin_global = optimize.brute(f, (grid,))

>>> xmin_global

array([-1.30641113])

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Optimization

In practical use scipy.optimize.brute() is not usable. There are
more advanced alternatives in other functions and packages.

fminboun(f,a,b) contrained to the (a, b) interval.

anneal() scipy.optimize.anneal() offers an alternative using
simulated annealing.

fmin cg() Conjugate gradient methods.

fmin ncg() Newton Methods (Nelder-Mead).

fmin Gradient-less methods

Packages OpenOpt

IPOPT

PyGMO

PyEvolve

Velasco and Perera Python in a Nutshell

http://openopt.org/Welcome
https://github.com/xuy/pyipopti
http://pagmo.sourceforge.net/pygmo/index.html
http://pyevolve.sourceforge.net/

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Optimization

Source

Velasco and Perera Python in a Nutshell

http://scipy-lectures-scipy-lectures.github.com/advanced/mathematical_optimization/index.html#gradient-based-methods

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Finding roots

Defined as the x|f(x)=0. Roots are found with help of fsolve. For the
case of f(x) = x2 + 10sin(x):

>>> optimize.fsolve(f, 1)

array([0.])

As seen from the plot of the function in the previous slides, there may
exist more than one root. The root we find depends solely on the
intial guess.

>>> optimize.fsolve(f, -2.5)

array([-2.47948183])

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Curve Fitting

Assume we observe our process that follows the function f(x), but we
have some noise to our measurements.

x = np.linspace(-10, 10, num=20)

obs = f(x) + \

10* np.random.randn(x.size)

10 5 0 5 1020

0

20

40

60

80

100

120

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Curve Fitting

Aha! We suspect that our process follows :

>>> def fguess(x, a, b):

... return a*x**2 + b*np.sin(x)

...

So we can try to fit a and b parameters.

>>> init_pars=[2,2]

>>> params, params_covariance = optimize.curve_fit(fguess,

... x, obs, init_pars)

...

>>> params

array([1.01163503, 12.56131525])

>>>

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Curve Fitting

plt.plot(x, f(x), ’b-’,

label="f(x)")

plt.plot(x, fguess(x, *params),

’r--’, label="Fit")

plt.plot(x,obs,’go’,

label=’Observations’)

plt.legend()

plt.xlabel(’x’)

plt.ylabel(’f(x)’)
10 5 0 5 10

x
20

0

20

40

60

80

100

120

f(x
)

f(x)
Fit
Observations

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Curve Fiting

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Interpolation

The scipy.interpolate is useful for fitting a function from
experimental data and thus evaluating points where no measure
exists. Let’s observe a process with oscillatory origin.

>>> t = np.linspace(0, 1, 10)

>>> N = (np.random.random(10)*2 - 1) * 1e-1

>>> obs = np.sin(2 * np.pi * t) + N

We can use the interpolate classes for building a linear “interpolator”.

>>> from scipy.interpolate import interp1d

>>> interpolator = interp1d(t, obs)

Then we can use this object to evaluate our new data.

>>> int_t = np.linspace(0, 1, 50)

>>> int_obs = interpolator(int_t)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Challenge

Challenge

Try to interpolate the same function with a cubic interpolation. Plot
the original function, the result of the linear and cubic interpolation
and the original observations.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Interpolation

0.0 0.2 0.4 0.6 0.8 1.01.0

0.5

0.0

0.5

1.0
measures
linear interp
cubic interp

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Integration

There exists a generic integration routune: scipy.integrate.quad().

>>> from scipy.integrate import quad

>>> res, err = quad(np.sin, 0, np.pi/2)

>>> res,err

(0.9999999999999999, 1.1102230246251564e-14)

odeint() General-purpose integrator using LSODA (Livermore
Solver for Ordinary Differential equations (from
ODEPACK Library).

Velasco and Perera Python in a Nutshell

http://people.sc.fsu.edu/~jburkardt/f77_src/odepack/odepack.html

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Integrator example

A damped spring-mass oscillator (2nd order oscillator). The dampig
effect is linearly related to the velocity of the oscillations.

d2x

dt2
+ 2ζω0

dx

dt
+ ω2

0x = 0 (7)

where ω2
0 = k/m, k the spring constant, m the mass and ζ = c

2mω0

with c as damping coefficient.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Integrator example

The damping ratio ζ = c
2mω0

= c

2m
√

k
m

determines:

Overdamped (ζ > 1) The system returns to equilibrium without
oscillating (exponencially decaying). Larger values of
the damping ratio ζ return to equilibrium more slowly.

Critical damp (ζ = 1) The system returns to equilibrium as quickly
as possible without oscillating.

Underdamped (0 < ζ < 1) The system oscillates (at reduced
frequency compared to the undamped case) with the
amplitude gradually decreasing to zero.

Undamped (ζ = 0) The system oscillates at ω0.

The values

>>> m, k, c = 0.5, 4, 0.4 # In kg, N/m, Ns/M

>>> c / (2 * m * np.sqrt(k/m))

0.1414213562373095

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Integrator example

We will use scipy’s integrate.odeint(). We need to transform the
second order system into two first order equations for Y = (y, ẏ).
Let’s define ν = 2ζω0 = c

m and o = ω2
0 = k

m :

>>> nu, o = c / m , k / m

Then, we can express Y = (y, ẏ):

y = ẋ (8)

ẏ = −νẋ− ox (9)

>>> from scipy.integrate import odeint

>>> def dy(y, t, nu, o):

... return (y[1], -nu * y[1] - o * y [0])

...

>>> time_vec = np.linspace(0, 10, 100)

>>> yarr = odeint(dy, (1, 0), time_vec, args=(nu, o))

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Integrator Example

pl.plot(time_vec,

yarr[:, 0], label=’y’)

pl.plot(time_vec,

yarr[:, 1], label="y’")

pl.legend()

0 2 4 6 8 102.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5
y
y'

Velasco and Perera Python in a Nutshell

Signal Processing

scipy.signal

This module includes a large number of functions for signal processing.
Covering the following areas:

Convolution

convolve()

fftconvolve()

correlate()

Waveforms

chirp()

square()

sawtooth()

Wavelets

daub()

cwt()

b-Splines

bspline()

spline filter()

Peak Finding

find peaks cwt()

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Signal Processing at scipy.signal

Filter Design

firwin()

freqz()

freqs()

iirdesign()

iirfilter()

kaiserord()

remez()

butter()

buttord()

cheb1()

cheb1ord()

Filtering

order filter()

medfilt()

wiener()

decimate()

resample()

detrend()

get window()

lfilter()

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Challenge

15 minutes

Use scipy.signal for:

1 Create a linear signal.

2 Add a random noise process.

3 detrend the signal.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Low Pass Filters

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Low Pass Filters

Parameters

ωp Passband. This is the frequency range which we desire
to let the signal through with minimal attenuation. In
the scipy functions this is in normalized frequency,
1 > ωp > 0, where 1 is the Nyquist frequency.

ωs Stopband. This is the frequency range which the signal
should be attenuated 1 > ωs > 0.

Rp, gpass The max variation in the passband, in decibels.

As, gstop The min attenuation in the stopband, in decibels.

Notes: The cutoff frequency is the -3dB point. If the cutoff frequency is required the algorithm will
work to meet the -3dB point at the ωc frequency.

ωp is the pass frequency, this is the last point were -gpass (Rp)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

IIR filter design

A number of filters are available through the iirdesign() function:
Filter Transition Passband Stopband Phase Comments

Bessel Knee? What
knee?

Monotonic Monotonic Near-linear s-to-z mappings
distort phase.
FIR usually more
efficient for linear
phase

Butterworth Rounded Maximally
flat, mono-
tonic

Monotonic nonlinear near
cutoff

Easy to design by
had Maple syrup is
better on waffles

Chebychev I Sharp Ripples Monotonic Worse Easy to design by
hand

Chebychev II Sharp Monotonic Ripples Worse Somewhat more
complicated design
than Chebychev I

Elliptic Maximally
sharp

Ripples Ripples Drunk fly on
cross- country
skies in a tor-
nado

Not viable for de-
sign by hand

Verbatim from Grover and Deller, Digital Signal Processing and the Microcontroller

iirdesign(Wp, Ws, Rpl, Asl, ftype=’butter’)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Example FIR design

Let’s define two convenience plots.

def mfreqz(b,a=1):

w,h=signal.freqz(b,a)

h_dB=20*log10(abs(h))

subplot(211)

plot(w/max(w),h_dB)

ylim(-150, 5)

ylabel(’Magnitude (db)’)

xlabel(r’Normalized Frequency (xπrad/sample)’)

title(r’Frequency response’)

subplot(212)

h_Phase = unwrap(arctan2(imag(h),real(h)))

plot(w/max(w),h_Phase)

ylabel(’Phase (radians)’)

xlabel(r’Normalized Frequency (xπrad/sample)’)

title(r’Phase response’)

subplots_adjust(hspace=0.5)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Example FIR design

def impz(b,a=1):

impulse = repeat(0.,50); impulse[0] =1.

x = arange(0,50)

response = signal.lfilter(b,a,impulse)

subplot(211)

stem(x, response)

ylabel(’Amplitude’)

xlabel(r’n (samples)’)

title(r’Impulse response’)

subplot(212)

step = cumsum(response)

stem(x, step)

ylabel(’Amplitude’)

xlabel(r’n (samples)’)

title(r’Step response’)

subplots_adjust(hspace=0.5)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Example Low Pass FIR design

Low Pass Filter

For designing lowpass FIR filters you can use the function
signal.firwin. Define the window length, cut off frequency and the
window:

>>> from scipy import signal

>>> from numpy import log10

>>> from pylab import *

>>> n = 61

>>> a = signal.firwin(n, cutoff = 0.3, window = "hamming")

>>> mfreqz(a)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Example FIR design

a = signal.firwin(n, cutoff = 0.3, window = ”hamming”)

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Frequency (xπrad/sample)

140
120
100

80
60
40
20
0

M
ag

ni
tu

de
 (d

b)

Frequency response

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Frequency (xπrad/sample)

40
35
30
25
20
15
10

5
0

Ph
as

e
(r

ad
ia

ns
)

Phase response

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Example FIR design

0 10 20 30 40 50
n (samples)

0.10
0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30

Am
pl

itu
de

Impulse response

0 10 20 30 40 50
n (samples)

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Am
pl

itu
de

Step response

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

scipy.ndimage

scipy.ndimage

This package contains various functions for multi-dimensional image
processing, mainly organized in four function groups:

Filters (convolve, correlate, ...)

Fourier Filters (Gaussian fourier filters, ...)

Interpolation (affine transform, rotate, ...)

Measurements (histogram, extrema, ...)

Morphology (closings, openings, ...)

Utility (imread)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Geometrical transformations on images

>>> from scipy import ndimage

>>> from scipy import misc

>>> lena = misc.lena()

>>> shifted_lena = ndimage.shift(lena, (50, 50))

>>> shifted_lena2 = ndimage.shift(lena, (50, 50), mode=’nearest’)

>>> rotated_lena = ndimage.rotate(lena, 30)

>>> cropped_lena = lena[50:-50, 50:-50]

>>> zoomed_lena = ndimage.zoom(lena, 2)

>>> zoomed_lena.shape

(1024, 1024)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Geometrical transformations on images

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Image Filtering

from scipy import misc

import numpy as np

from scipy import signal

lena = misc.lena()

noisy_lena = np.copy(lena).astype(np.float)

noisy_lena += lena.std()*0.5*\

np.random.standard_normal(lena.shape)

blurred_lena = ndimage.gaussian_filter(noisy_lena, sigma=3)

median_lena = ndimage.median_filter(blurred_lena, size=5)

wiener_lena = signal.wiener(blurred_lena, (5,5))

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Image Filtering

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Measurements

Let us first generate a nice synthetic binary image.

x, y = np.indices((100, 100))

sig = np.sin(2*np.pi*x/50.)*\

np.sin(2*np.pi*y/50.)*(1+x*y/50.**2)**2

mask = sig > 1

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Measurements

Play with the following code, plot sig, and the labels:

>>> labels, nb = ndimage.label(mask)

>>> areas = ndimage.sum(mask, labels, xrange(1, labels.max()+1))

>>> areas

array([190., 45., 424., 278., 459., 190., 549., 424.])

>>> maxima = ndimage.maximum(sig, labels, xrange(1, labels.max()+1))

>>> maxima

array([1.80238238, 1.13527605, 5.51954079, 2.49611818,

6.71673619, 1.80238238, 16.76547217, 5.51954079])

>>> ndimage.find_objects(labels==4)

[(slice(30L, 48L, None), slice(30L, 48L, None))]

>>> sl = ndimage.find_objects(labels==4)

>>> import pylab as pl

>>> pl.imshow(sig[sl[0]])

<matplotlib.image.AxesImage object at 0x3ad5290>

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Measurements

0 5 10 15

0

5

10

15

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Challenge

https://www.dropbox.com/s/cgc14z3rafshjho/MV HFV 012.jpg
Download Image.

Download the following image
Download Image.
This file shows a Scanning
Element Microscopy image of glass
sample (light gray matrix) with
some bubbles (on black) and
unmolten sand grains (dark gray).
Our goal is to determine the
fraction of the sample covered by
these three phases, and to estimate
the typical size of sand grains and
bubbles, their sizes, etc.

Velasco and Perera Python in a Nutshell

https://www.dropbox.com/s/cgc14z3rafshjho/MV_HFV_012.jpg
https://www.dropbox.com/s/cgc14z3rafshjho/MV_HFV_012.jpg
https://www.dropbox.com/s/cgc14z3rafshjho/MV_HFV_012.jpg

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Challenge

1 Open the image.

2 Crop unwanted segments.

3 Filter the image with a median filter.

4 Check the effect of the filter on the histogram.
5 From the histogram. Set thresholds for:

Sand pixels.
Glass pixels.
Bubble Pixels.

6 Display an image with the colored elements.

7 Could you estimate the mean size of bubbles?

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Linear Algebra
Fast Fourier Transforms
Optimization
Interpolation
Numerical Integration
Signal and Image Processing

Special Functions

There is a rich library for computing Special Functions, brought by
scipy.special, main functions are:

Elliptic Funs sllipj(), ellipj(), ...

Bessel Funs jn(), jv(),jve(), ...

Statistical Funs btdtr(), . It is better to use scipy.stats functions.

Gamma Funs gamma(), multigamma(), ...

Error Funs erf(), erfc, ...

Legendre Funs lpmv, legendre(), ...

Hypergeom. hypf1(), ...

++ http://docs.scipy.org/doc/scipy/reference/

special.htmlAnd more...

Velasco and Perera Python in a Nutshell

http://docs.scipy.org/doc/scipy/reference/special.html
http://docs.scipy.org/doc/scipy/reference/special.html

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

A dense matrix is a matematical object for data storage
of a 2D array ofvalues.

Memory is allocated once for all items

Storage in a contiguous chunk (aka NumPy ndarray)

The access to individual items is fast.

Why Space Matrices?

It’s this memory thing... Imagine adjacency matrices for:

All Graph theory.

40000 proteins in a typical PPI dataset.

10e7 Facebook users in a typical country.

Partial Differential Equations (PDEs), Finite Elements and
others.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

Grow, my son, grow...

import numpy as np

import matplotlib.pyplot as plt

e = np.linspace(0,1e6,10)

v = 8 * (e**2)/1e9

plt.plot(e,v,lw=5)

plt.xlabel(’size n’)

plt.ylabel(’mem (Gb)’)

0 200000 400000 600000 800000 1000000
size n

0

1000

2000

3000

4000

5000

6000

7000

8000

m
em

 (G
b)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

Sparse Matrix

Sparse Matrix is an almost
empty matrix.

If a zero means nothing, let’s
store nothing.

It’s a form of compression,
huge memory savings.

Enables applications.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

Storage Schemes

There are seven storage schemes offered by scipy.sparse:

csc matrix Compressed Sparse Column format.

csr matrix Compressed Sparse Row format.

bsr matrix Block Sparse Row format.

lil matrix Lists of Lists format.

dok matrix Dictionary of Keys format.

coo matrix COOrdiante format (Xijk).

dia matrix DIAgonal Matrix format.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

spmatrix

object All scipy.sparse classes are subclasses of spmatrix.

Default implementation of arithmetic ops.
matrix/NumPy: toarray(),todense()

Attributes mtx.A toarray().
mtx.T Transpose.
mtx.H Hermitian transpose.

mtx.real Real part of complex matrix.
mtx.imag Imaginary part of complex matrix.
mtx.size Non-zero size.

mtx.shape The number of rows/columns.

storage In form of NumPuy arrays.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

COO matrix challenge

Check the documentation of sparse.coo matrix. Create a sparse
matrix M so that it looks like the following

>>> M.todense()

matrix([[4, 0, 9, 0],

[0, 7, 0, 0],

[0, 0, 0, 0],

[0, 0, 0, 5]])

Can you slice this type of matrix?

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

Solvers

SuperLU 4.0

Included in SciPy.

Real and Complex domains.

Single and double precision.

umfpack

UMFPACK is a set of routines for solving unsymmetric sparse linear
systems

Real and Complex domains.

Double precision.

Fast.

See scikits.umfpack and scikits.suitesparse.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

Example

>>> import numpy as np

>>> from scipy import sparse

>>> mtx = sparse.spdiags([[1, 2, 3, 4, 5], [6, 5, 8, 9, 10]], [0, 1], 5, 5)

>>> mtx.todense()

matrix([[1, 5, 0, 0, 0],

[0, 2, 8, 0, 0],

[0, 0, 3, 9, 0],

[0, 0, 0, 4, 10],

[0, 0, 0, 0, 5]])

>>> rhs = np.array([1, 2, 3, 4, 5])

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

Example

>>> from scipy.sparse.linalg import dsolve

>>> mtx1 = mtx.astype(np.float32)

>>> x = dsolve.spsolve(mtx1, rhs, use_umfpack=False)

>>> x

array([106. , -21. , 5.5, -1.5, 1.], dtype=float32)

>>> mtx1*x

array([1., 2., 3., 4., 5.], dtype=float32)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

Eigensolvers

eigen module

arpack A colection of Fortran77 subroutines to solver large
scale eigenvalue problems.

lobpcg Locally Optimal Block Preconditioned Conjugate
Gradient Method. See also the PyAMG module.

PyAMG PyAMG is a library of Algebraic Multigrid (AMG)
solvers. Check http://code.google.com/p/pyamg/

Pysparse

Pysparse is a fast sparse matrix library for Python. It provides
several sparse matrix storage formats and conversion methods. It also
implements a number of iterative solvers, preconditioners, and
interfaces to efficient factorization packages.

Velasco and Perera Python in a Nutshell

http://code.google.com/p/pyamg/

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

Writing code

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

Coding in Science

Things should be clever, but not too clever.

Algorithms are optimal, both in speed as well as in readability.

Classes, variables and functions are well named and make sense
without having to think too much.

You come back to it after a weekend off, and you can jump
straight in.

Things that will be reused are reusable.

Write automated test cases

Unit tests are easy to write.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

Coding in Science

def p(n):

"""print 3.1415 """

return n**2

exec(p.__doc__) # hidd

3.1415

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

Code profiling

timeit (only in ipython)

In [1]: import numpy as np

In [2]: a = np.arange(1000)

In [3]: %timeit a ** 2

100000 loops, best of 3: 5.73 us per loop

In [4]: %timeit a ** 2.1

1000 loops, best of 3: 154 us per loop

In [5]: %timeit a * a

100000 loops, best of 3: 5.56 us per loop

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

Profiler

This is very useful for large programs.

For this example to run, you also need the ’ica.py’ file

import numpy as np

from scipy import linalg

from ica import fastica

def test():

data = np.random.random((5000, 100))

u, s, v = linalg.svd(data)

pca = np.dot(u[:10, :], data)

results = fastica(pca.T, whiten=False)

test()

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

Profiler %run -t

In [1]: %run -t demo.py

IPython CPU timings (estimated):

User : 14.3929 s.

System: 0.256016 s.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

Profiler %run -p

In [2]: %run -p demo.py

916 function calls in 14.551 CPU seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)

1 14.457 14.457 14.479 14.479 decomp.py:849(svd)

1 0.054 0.054 0.054 0.054 {method ’random_sample’ of ’mtrand.RandomState’ objects}

1 0.017 0.017 0.021 0.021 function_base.py:645(asarray_chkfinite)

54 0.011 0.000 0.011 0.000 {numpy.core._dotblas.dot}

2 0.005 0.002 0.005 0.002 {method ’any’ of ’numpy.ndarray’ objects}

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

Line profiler

The Line Profiler tells us from where our code is called! Save this
program as demo.py

@profile

def test():

data = np.random.random((5000, 100))

u, s, v = linalg.svd(data)

pca = np.dot(u[:10, :], data)

results = fastica(pca.T, whiten=False)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

Line Profiler

~ $ kernprof.py -l -v demo.py

Wrote profile results to demo.py.lprof

Timer unit: 1e-06 s

File: demo.py

Function: test at line 5

Total time: 14.2793 s

Line # Hits Time Per Hit % Time Line Contents

==

5 @profile

6 def test():

7 1 19015 19015.0 0.1 data = np.random.random((5000, 100))

8 1 14242163 14242163.0 99.7 u, s, v = linalg.svd(data)

9 1 10282 10282.0 0.1 pca = np.dot(u[:10, :], data)

10 1 7799 7799.0 0.1 results = fastica(pca.T, whiten=False)

Use this Link to retrieve Kernprof.py (http://packages.python.org/line profiler/kernprof.py)

Velasco and Perera Python in a Nutshell

http://packages.python.org/line_profiler/kernprof.py

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

Speed up you code

Some commonly encountered tricks to make code faster.

Vectorizing for loops
Avoid for loops using numpy arrays. For this, masks and indices
arrays can be useful.

Broadcasting
Use broadcasting to do operations on arrays as small as possible
before combining them

In place operations:

In [1]: a = np.zeros(1e7)

In [2]: %timeit global a ; a = 0*a

10 loops, best of 3: 111 ms per loop

In [3]: %timeit global a ; a *= 0

10 loops, best of 3: 48.4 ms per loop

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

Speed up your code

Use views, and not copies.
Copying big arrays is as costly as making simple numerical
operations on them:

In [1]: a = np.zeros(1e7)

In [2]: %timeit a.copy()

10 loops, best of 3: 124 ms per loop

In [3]: %timeit a + 1

10 loops, best of 3: 112 ms per loop

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

Speed up your code

Memory access is cheaper when it is grouped: accessing a big array in
a continuous way is much faster than random acces. C or Fortran
ordering has a strong effect on matrix access.
This example is really nice:

In [1]: c = np.zeros((1e4, 1e4), order=’C’)

In [2]: %timeit c.sum(axis=0)

1 loops, best of 3: 3.89 s per loop

In [3]: %timeit c.sum(axis=1)

1 loops, best of 3: 188 ms per loop

In [4]: c.strides

Out[4]: (80000, 8)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

Challenge JUN

https://www.dropbox.com/s/0bvyrc1zf5x1hhk/jun.txt

GACATCATGGGCTATTTTTAGGGGTTGACTGGTAGCAGATAAGTGTTGAGCTCGGGCTGGATAAGGGCTC

AGAGTTGCACTGAGTGTGGCTGAAGCAGCGAGGCGGGAGTGGAGGTGCGCGGAGTCAGGCAGACAGACAG

ACACAGCCAGCCAGCCAGGTCGGCAGTATAGTCCGAACTGCAAATCTTATTTTCTTTTCACCTTCTCTCT

AACTGCCCAGAGCTAGCGCCTGTGGCTCCCGGGCTGGTGTTTCGGGAGTGTCCAGAGAGCCTGGTCTCCA

GCCGCCCCCGGGAGGAGAGCCCTGCTGCCCAGGCGCTGTTGACAGCGGCGGAAAGCAGCGGTACCCACGC

GCCCGCCGGGGGAAGTCGGCGAGCGGCTGCAGCAGCAAAGAACTTTCCCGGCTGGGAGGACCGGAGACAA

GTGGCAGAGTCCCGGAGCCAACTTTTGCAAGCCTTTCCTGCGTCTTAGGCTTCTCCACGGCGGTAAAGAC

CAGAAGGCGGCGGAGAGCCACGCAAGAGAAGAAGGACGTGCGCTCAGCTTCGCTCGCACCGGTTGTTGAA

CTTGGGCGAGCGCGAGCCGCGGCTGCCGGGCGCCCCCTCCCCCTAGCAGCGGAGGAGGGGACAAGTCGTC

GGAGTCCGGGCGGCCAAGACCCGCCGCCGGCCGGCCACTGCAGGGTCCGCACTGATCCGCTCCGCGGGGA

GAGCCGCTGCTCTGGGAAGTGAGTTCGCCTGCGGACTCCGAGGAACCGCTGCGCACGAAGAGCGCTCAGT

GAGTGACCGCGACTTTTCAAAGCCGGGTAGCGCGCGCGAGTCGACAAGTAAGAGTGCGGGAGGCATCTTA

ATTAACCCTGCGCTCCCTGGAGCGAGCTGGTGAGGAGGGCGCAGCGGGGACGACAGCCAGCGGGTGCGTG

CGCTCTTAGAGAAACTTTCCCTGTCAAAGGCTCCGGGGGGCGCGGGTGTCCCCCGCTTGCCACAGCCCTG

TTGCGGCCCCGAAACTTGTGCGCGCAGCCCAAACTAACCTCACGTGAAGTGACGGACTGTTCTATGACTG

CAAAGATGGAAACGACCTTCTATGACGATGCCCTCAACGCCTCGTTCCTCCCGTCCGAGAGCGGACCTTA

TGGCTACAGTAACCCCAAGATCCTGAAACAGAGCATGACCCTGAACCTGGCCGACCCAGTGGGGAGCCTG

AAGCCGCACCTCCGCGCCAAGAACTCGGACCTCCTCACCTCGCCCGACGTGGGGCTGCTCAAGCTGGCGT

CGCCCGAGCTGGAGCGCCTGATAATCCAGTCCAGCAACGGGCACATCACCACCACGCCGACCCCCACCCA

GTTCCTGTGCCCCAAGAACGTGACAGATGAGCAGGAGGGCTTCGCCGAGGGCTTCGTGCGCGCCCTGGCC

GAACTGCACAGCCAGAACACGCTGCCCAGCGTCACGTCGGCGGCGCAGCCGGTCAACGGGGCAGGCATGG

...

Velasco and Perera Python in a Nutshell

https://www.dropbox.com/s/0bvyrc1zf5x1hhk/jun.txt

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

Challenge JUN (continued)

...

TGGCTCCCGCGGTAGCCTCGGTGGCAGGGGGCAGCGGCAGCGGCGGCTTCAGCGCCAGCCTGCACAGCGA

GCCGCCGGTCTACGCAAACCTCAGCAACTTCAACCCAGGCGCGCTGAGCAGCGGCGGCGGGGCGCCCTCC

TACGGCGCGGCCGGCCTGGCCTTTCCCGCGCAACCCCAGCAGCAGCAGCAGCCGCCGCACCACCTGCCCC

AGCAGATGCCCGTGCAGCACCCGCGGCTGCAGGCCCTGAAGGAGGAGCCTCAGACAGTGCCCGAGATGCC

CGGCGAGACACCGCCCCTGTCCCCCATCGACATGGAGTCCCAGGAGCGGATCAAGGCGGAGAGGAAGCGC

ATGAGGAACCGCATCGCTGCCTCCAAGTGCCGAAAAAGGAAGCTGGAGAGAATCGCCCGGCTGGAGGAAA

AAGTGAAAACCTTGAAAGCTCAGAACTCGGAGCTGGCGTCCACGGCCAACATGCTCAGGGAACAGGTGGC

ACAGCTTAAACAGAAAGTCATGAACCACGTTAACAGTGGGTGCCAACTCATGCTAACGCAGCAGTTGCAA

ACATTTTGAAGAGAGACCGTCGGGGGCTGAGGGGCAACGAAGAAAAAAAATAACACAGAGAGACAGACTT

GAGAACTTGACAAGTTGCGACGGAGAGAAAAAAGAAGTGTCCGAGAACTAAAGCCAAGGGTATCCAAGTT

GGACTGGGTTGCGTCCTGACGGCGCCCCCAGTGTGCACGAGTGGGAAGGACTTGGCGCGCCCTCCCTTGG

CGTGGAGCCAGGGAGCGGCCGCCTGCGGGCTGCCCCGCTTTGCGGACGGGCTGTCCCCGCGCGAACGGAA

CGTTGGACTTTTCGTTAACATTGACCAAGAACTGCATGGACCTAACATTCGATCTCATTCAGTATTAAAG

GGGGGAGGGGGAGGGGGTTACAAACTGCAATAGAGACTGTAGATTGCTTCTGTAGTACTCCTTAAGAACA

CAAAGCGGGGGGAGGGTTGGGGAGGGGCGGCAGGAGGGAGGTTTGTGAGAGCGAGGCTGAGCCTACAGAT

GAACTCTTTCTGGCCTGCCTTCGTTAACTGTGTATGTACATATATATATTTTTTAATTTGATGAAAGCTG

ATTACTGTCAATAAACAGCTTCATGCCTTTGTAAGTTATTTCTTGTTTGTTTGTTTGGGTATCCTGCCCA

GTGTTGTTTGTAAATAAGAGATTTGGAGCACTCTGAGTTTACCATTTGTAATAAAGTATATAATTTTTTT

ATGTTTTGTTTCTGAAAATTCCAGAAAGGATATTTAAGAAAATACAATAAACTATTGGAAAGTACTCCCC

TAACCTCTTTTCTGCATCATCTGTAGATACTAGCTATCTAGGTGGAGTTGAAAGAGTTAAGAATGTCGAT

TAAAATCACTCTCAGTGCTTCTTACTATTAAGCAGTAAAAACTGTTCTCTATTAGACTTTAGAAATAAAT

GTACCTGATGTACCTGATGCTATGGTCAGGTTATACTCCTCCTCCCCCAGCTATCTATATGGAATTGCTT

ACCAAAGGATAGTGCGATGTTTCAGGAGGCTGGAGGAAGGGGGGTTGCAGTGGAGAGGGACAGCCCACTG

AGAAGTCAAACATTTCAAAGTTTGGATTGTATCAAGTGGCATGTGCTGTGACCATTTATAATGTTAGTAG

AAATTTTACAATAGGTGCTTATTCTCAAAGCAGGAATTGGTGGCAGATTTTACAAAAGATGTATCCTTCC

AATTTGGAATCTTCTCTTTGACAATTCCTAGATAAAAAGATGGCCTTTGCTTATGAATATTTATAACAGC

ATTCTTGTCACAATAAATGTATTCAAATACCAA

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

Introduction to storage of large data
Storage Schemes
Linear System Solvers
Others
Notes On code optimization and profiling
Profiling your code
Speeding your code

Challenge

JUN TF gene

From the above gene, write a code that counts:

Nuclotide frequency table.

BiNucleotide frequency table.

TriNucleotide frequency table.

Split your code in several functions. Use the profiler and line profiler
to measure the performance of your code.
How much your code would spend to process the complete human
genome (3.5 · 109 Nucleotides)?

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First Steps with SimPy
Algebraic manipulations
Calculus
Equation solving
Linear Algebra

Symbolic Mathematics in Python

Sympy

SymPy is a Python library for symbolic mathematics. Implements a
computer algebra system comparable with Mathematica or Maple.
It has a separate website at http://sympy.org

Capabilities:

Evaluate expressions with arbitrary precision.

Perform algebraic manipulations on symbolic expressions.

Perform basic calculus with symbolic expressions including limits,
differentiation and integration.

Solve polynomial and transcendental equations.

Solve some differential equations.

Velasco and Perera Python in a Nutshell

http://sympy.org

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First Steps with SimPy
Algebraic manipulations
Calculus
Equation solving
Linear Algebra

Introduction

Rational class

SymPy offers the representation of a Rational class as a pair of two
integers, so:

>>> from sympy import *

>>> r = Rational(1,2)

>>> r

1/2

>>> r.evalf()

0.500000000000000

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First Steps with SimPy
Algebraic manipulations
Calculus
Equation solving
Linear Algebra

Introduction

mpmath

SymPy uses mpmath.
Mpmath is a pure-Python library for multiprecision floating-point
arithmetic. It provides an extensive set of transcendental functions
(f(x) = xπ), unlimited exponent sizes, complex numbers, interval
arithmetic, numerical integration and differentiation, root-finding,
linear algebra, and much more.
This allows to perform computations using arbitraty precision
atithmetic, including the evaluation of e, π, and the inclusion of ∞ as
a symbol itself through the oo.

Velasco and Perera Python in a Nutshell

http://code.google.com/p/mpmath/

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First Steps with SimPy
Algebraic manipulations
Calculus
Equation solving
Linear Algebra

Introduction

>>> pi**2

pi**2

>>> pi.evalf()

3.14159265358979

>>> pi.evalf(60)

3.14159265358979323846264338327950288419716939937510582097494

>>> oo > 10000

True

>>> oo+10000

oo

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First Steps with SimPy
Algebraic manipulations
Calculus
Equation solving
Linear Algebra

Challenge

2 mins challenge

Create two rationals corresponding to 1/2 and 2/3 and sum them.

Compute the value of
√

2π
3 with 30 decimals.

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First Steps with SimPy
Algebraic manipulations
Calculus
Equation solving
Linear Algebra

Symbols

Symbolic variables must be declared explicitly.

>>> from sympy import *

>>> x = Symbol(’x’)

>>> y = Symbol(’y’)

And then comes the magic:

>>> x-y+x-y-x+y+y

x

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First Steps with SimPy
Algebraic manipulations
Calculus
Equation solving
Linear Algebra

Expand

Expand expands powers and multiplications:

>>> (x+y)**2

(x + y)**2

>>> expand((x+y)**2)

x**2 + 2*x*y + y**2

>>> expand((x)**2, complex=True)

-im(x)**2 + 2*I*im(x)*re(x) + re(x)**2

>>> expand(cos(x+y), trig=True)

-sin(x)*sin(y) + cos(x)*cos(y)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First Steps with SimPy
Algebraic manipulations
Calculus
Equation solving
Linear Algebra

Simplify

simplify()

>>> simplify((x+x*y)/x)

y + 1

There are specific targeted simplify functions:

powsimp Simplification of exponents.

trigsimp Trigonometric expressions.

logcombine log(x) + log(y) = log(xy) and a log(x) = log(xa)

radsimp Rationalize the denominator.

together Rational expressions (No heroic measures are taken to
minimize degree of the resulting numerator and
denominator., sic.)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First Steps with SimPy
Algebraic manipulations
Calculus
Equation solving
Linear Algebra

challenge

2 min challenge

Compute the expanded form of (x+ xy)3

Simplify the expression sin(x)
cos(x)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First Steps with SimPy
Algebraic manipulations
Calculus
Equation solving
Linear Algebra

Limits

Interestingly, limits are very easy to use in SymPy, just use the sintax:

limits

limit(function, variable, point)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First Steps with SimPy
Algebraic manipulations
Calculus
Equation solving
Linear Algebra

Limits

>>> x = Symbol(’x’)

>>> limit(sin(x)/x, x, 0)

1

>>> limit(x, x, oo)

oo

>>> limit(1/x, x, oo)

0

>>> limit(x**x, x, 0)

1

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First Steps with SimPy
Algebraic manipulations
Calculus
Equation solving
Linear Algebra

Differentiation

You can differentiate any SymPy expression using:

differentiation

diff(func,var,n)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First Steps with SimPy
Algebraic manipulations
Calculus
Equation solving
Linear Algebra

Differentiation

>>> x = Symbol(’x’)

>>> diff(sin(x), x)

cos(x)

>>> diff(sin(2*x), x)

2*cos(2*x)

>>> diff(tan(x), x)

tan(x)**2 + 1

>>> diff(sin(2*x), x, 3)

-8*cos(2*x)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First Steps with SimPy
Algebraic manipulations
Calculus
Equation solving
Linear Algebra

Series Expansion

SymPy also knows how to compute the Taylor series of an expression
at a point. Use :

series

series(expr,var)

>>> x = Symbol(’x’)

>>> series(cos(x), x)

1 - x**2/2 + x**4/24 + O(x**6)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First Steps with SimPy
Algebraic manipulations
Calculus
Equation solving
Linear Algebra

Integration

Integration

SymPy has support for indefinite and definite integration of
transcendental elementary and special functions via integrate()
facility, which uses powerful extended Risch-Norman algorithm and
some heuristics and pattern matching.

>>> x = Symbol(’x’)

>>> integrate(2*x**4,x)

2*x**5/5

>>> integrate(cos(x),x)

sin(x)

>>> integrate(log(x)*x,x)

x**2*log(x)/2 - x**2/4

>>> integrate(log(x)*x,(x,0,1))

-1/4

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First Steps with SimPy
Algebraic manipulations
Calculus
Equation solving
Linear Algebra

Solver

SymPy is able to solve algebraic equations, in one and several
variables:

>>> x = Symbol(’x’)

>>> y = Symbol(’y’)

>>> solve(x**4 - 1, x)

[1, -1, -I, I]

>>> solve([x + 5*y - 2, -3*x + 6*y - 15], [x, y])

{x: -3, y: 1}

>>> solve(exp(x) + 1, x)

[I*pi]

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First Steps with SimPy
Algebraic manipulations
Calculus
Equation solving
Linear Algebra

Factor

For solving polinomials, also consider the use of factor:

>>> x = Symbol(’x’)

>>> f = x**4 - 3*x**2 + 1

>>> factor(f)

(x**2 - x - 1)*(x**2 + x - 1)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First Steps with SimPy
Algebraic manipulations
Calculus
Equation solving
Linear Algebra

Challenge

2 mins challenge

Could you solve the system of equations:

x+ y = 2 (10)

2x+ y = 0 (11)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First Steps with SimPy
Algebraic manipulations
Calculus
Equation solving
Linear Algebra

Matrix support

Matrices can be created as instances from the Matrix class:

>>> from sympy import Matrix

>>> Matrix([[1,0],[0,1]])

[1, 0]

[0, 1]

But...

>>> A = Matrix([[1,x],[y,1]])

>>> A.det()

-x*y + 1

>>> A**2

[x*y + 1, 2*x]

[2*y, x*y + 1]

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First Steps with SimPy
Algebraic manipulations
Calculus
Equation solving
Linear Algebra

Challenge

Differential Equations

Create a Generic function f

>>> f = Function("f")

>>> f(x)

f(x)

>>> f(x).diff()

Derivative(f(x), x)

>>> e = Eq(f(x).diff(x,x) + 9*f(x) , 0)

>>> e

9*f(x) + Derivative(f(x), x, x) == 0

>>> dsolve(e,f(x))

f(x) == C1*cos(3*x) + C2*sin(3*x)

Velasco and Perera Python in a Nutshell

Introduction
Statistics

Some Calculus
Storage Schemes and code profiling

SymPy

First Steps with SimPy
Algebraic manipulations
Calculus
Equation solving
Linear Algebra

Questions

Velasco and Perera Python in a Nutshell

	Introduction
	Input/Output

	Statistics
	First statistics
	Probability Distributions
	Density Estimation
	Statistical Testing

	Some Calculus
	Linear Algebra
	Fast Fourier Transforms
	Optimization
	Interpolation
	Numerical Integration
	Signal and Image Processing

	Storage Schemes and code profiling
	Introduction to storage of large data
	Storage Schemes
	Linear System Solvers
	Others
	Notes On code optimization and profiling
	Profiling your code
	Speeding your code

	SymPy
	First Steps with SimPy
	Algebraic manipulations
	Calculus
	Equation solving
	Linear Algebra

