
Python in a Nutshell
Part I: Python, ipython, language and OOP

Manel Velasco,1 PhD and Alexandre Perera,1,2 PhD

1Departament d’Enginyeria de Sistemes, Automatica i Informatica Industrial
(ESAII)

Universitat Politecnica de Catalunya

2Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y
Nanomedicina (CIBER-BBN)

Alexandre.Perera@upc.edu Manel.Velasco@upc.edu

Introduction to Python for Engineering and Statistics
Febraury, 2013

mailto:Alexandre.Perera@upc.edu
mailto:manel.velasco@upc.edu

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Contents I

1 Introduction
Why Learn Python
Python History
Installing Python
Python Resources

2 Working with Python
Workflow
ipython vs. CLI
Text Editors
IDEs
Notebook

3 Getting Started With Python
Introduction

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Contents II

Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

4 Functions and Object Oriented Programming
Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Why Learn Python
Python History
Installing Python
Python Resources

Outline

1 Introduction
Why Learn Python
Python History
Installing Python
Python Resources

2 Working with Python
Workflow
ipython vs. CLI
Text Editors
IDEs
Notebook

3 Getting Started With Python
Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

4 Functions and Object Oriented Programming
Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Why Learn Python
Python History
Installing Python
Python Resources

The scientist’s needs

Get data (simulation, experiment control)

Manipulate and process data.

Visualize results... to understand what we are doing!

Communicate results: produce figures for reports or publications,
write presentations.

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Why Learn Python
Python History
Installing Python
Python Resources

Specifications

We don’t want to re-program the plotting of a curve, a Fourier
transform or a fitting algorithm. Don’t reinvent the wheel! We
need building blocks

Easy to learn: computer science is neither our job nor our
education

The code should be as readable as a book

Efficient code that executes quickly... but needless to say that a
very fast code becomes useless if we spend too much time writing
it. So, we need both a quick development time and a quick
execution time

A single environment/language for everything

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Why Learn Python
Python History
Installing Python
Python Resources

Existing solutions I

Compiled languages: C, C++, Fortran, etc.
Advantages:

Very fast. Very optimized compilers. For heavy computations, it’s difficult
to outperform these languages.
Some very optimized scientific libraries have been written for these
languages. Example: BLAS (vector/matrix operations)

Drawbacks:
Painful usage: no interactivity during development, mandatory
compilation steps, verbose syntax (*, **, ::, } , ; etc.), manual memory
management (tricky in C). These are difficult languages for non
computer scientists.

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Why Learn Python
Python History
Installing Python
Python Resources

Existing solutions II

Scripting languages: Matlab
Advantages:

Very rich collection of libraries with numerous algorithms, for many
different domains. Fast execution because these libraries are often written
in a compiled language.
Pleasant development environment: comprehensive and well organized
help, integrated editor, etc.
Commercial support is available.

Drawbacks:
Base language is quite poor and can become restrictive for advanced users.
Not free

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Why Learn Python
Python History
Installing Python
Python Resources

Existing solutions III

Other scripting languages: Scilab, Octave, Igor, R, IDL,
etc.

Advantages:
Open-source, free, or at least cheaper than Matlab.
Some features can be very advanced (statistics in R, figures in Igor, etc.)

Drawbacks:
Fewer available algorithms than in Matlab, and the language is not more
advanced.
Some software are dedicated to one domain. Ex: Gnuplot or xmgrace to
draw curves. These programs are very powerful, but they are restricted to
a single type of usage, such as plotting.

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Why Learn Python
Python History
Installing Python
Python Resources

Why not?

What about Python?
Advantages:

Very rich scientific computing libraries (a bit less than Matlab, though)
Well thought out language, allowing to write very readable and well
structured code: we “code what we think”.
Many libraries for other tasks than scientific computing (web server
management, serial port access, etc.)
Free and open-source software, widely spread, with a vibrant community.

Drawbacks:
Less pleasant development environment than, for example, Matlab. (More
geek-oriented).
Not all the algorithms that can be found in more specialized software or
toolboxes.

It is not a must

You don’t need to use Python... but what the hell,
why not?

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Why Learn Python
Python History
Installing Python
Python Resources

History

History

Python 1.0 - January 1994
Python 1.5 - December 31, 1997
Python 1.6 - September 5, 2000

Python 2.0 - October 16, 2000
Python 2.1 - April 17, 2001
Python 2.2 - December 21, 2001
Python 2.3 - July 29, 2003
Python 2.4 - November 30, 2004
Python 2.5 - September 19, 2006
Python 2.6 - October 1, 2008
Python 2.7 - July 3, 2010

Python 3.0 - December 3, 2008
Python 3.1 - June 27, 2009
Python 3.2 - February 20, 2011
Python 3.3 - September 29, 2012

Guido van Rossum

Conceived in the
late 1980s by

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Why Learn Python
Python History
Installing Python
Python Resources

Installation

Linux

apt-get install python

Windows

Go to
http://www.python.org/getit/

and download Python 2.7.3
Windows Installer

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Why Learn Python
Python History
Installing Python
Python Resources

Resources

HELP!!!

http://python.org

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Workflow
ipython vs. CLI
Text Editors
IDEs
Notebook

Outline

1 Introduction
Why Learn Python
Python History
Installing Python
Python Resources

2 Working with Python
Workflow
ipython vs. CLI
Text Editors
IDEs
Notebook

3 Getting Started With Python
Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

4 Functions and Object Oriented Programming
Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Velasco and Perera Python in a Nutshell

Python core

Python
Shell

Script
IDE

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Workflow
ipython vs. CLI
Text Editors
IDEs
Notebook

Workflow

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Workflow
ipython vs. CLI
Text Editors
IDEs
Notebook

Python core

Python Core

Python is open, is just an specification, thus
there are many Python implementations:

CPython The default (C, C++)

CLPython Lisp implementation of Python

Jython The java implementation of Python

PyPy The python implementation of Python

IronPython C# implementation

Python Core

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Workflow
ipython vs. CLI
Text Editors
IDEs
Notebook

Python Shell

Python Shell

There are many tools to drive directly with Python, the most
remarkable are:

CLIPython The default one

IPython Enhanced (VERY enhanced) default shell

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Workflow
ipython vs. CLI
Text Editors
IDEs
Notebook

Text editors

Script editors

Any text editor is well suited for creating scripts with python,
we recommend some features on it:

Tab substitution

Code snippets

Autocompletion

In the Linux wild, Vim and Emacs are both well suited.

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Workflow
ipython vs. CLI
Text Editors
IDEs
Notebook

IDEs

Most Valuable IDEs

Spyder The Matlab-like environment, scientist oriented.
Scientist oriented

Eclipse-PyDEV Big project oriented

DEMO

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Workflow
ipython vs. CLI
Text Editors
IDEs
Notebook

Notebook

An HTML Notebook IPython

The IPython Notebook consists of two related components:

An JSON based Notebook document format for recording
and distributing Python code and rich text.

A web-based user interface for authoring and running
notebook documents.

DEMO

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Outline

1 Introduction
Why Learn Python
Python History
Installing Python
Python Resources

2 Working with Python
Workflow
ipython vs. CLI
Text Editors
IDEs
Notebook

3 Getting Started With Python
Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

4 Functions and Object Oriented Programming
Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

First step

STEP 1

Start the interpreter and type in

>>> print "Hello, world"

Hello, world

Welcome to Python,
you just executed your first Python instruction, congratulations!

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Second step

STEP 2

To get yourself started, type the following stack of instructions

>>> a = 3

>>> b = 2*a

>>> type(b)

<type ’int’>

>>> print b

6

>>> a*b

18

>>> b = ’hello’

>>> type(b)

<type ’str’>

>>> b + b

’hellohello’

>>> 2*b

’hellohello’

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Second step

STEP 2

To get yourself started, type the following stack of instructions

>>> a = 3

>>> b = 2*a

>>> type(b)

<type ’int’>

>>> print b

6

>>> a*b

18

>>> b = ’hello’

>>> type(b)

<type ’str’>

>>> b + b

’hellohello’

>>> 2*b

’hellohello’

Observe that
We do not declare variables
(hurrah!!!!!)

Variable type may be changed on
the fly (hurrah!!!, hurrah!!!)

There is a way to overload
operators (hurrah!, hurrah!,
hurrah!!!)

There is a function that tell us the
type of a variable.

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Types

Integer

>>> 1+1

2

>>> a=4

Boolean

>>> 3 > 4

False

>>> test = (3 > 4)

>>> test

False

>>> type(test)

<type ’bool’>

Float

>>> c=2.1

>>> 3.5/c

1.6666666666666665

Complex

>>> a=1.5+0.5j

>>> a.real

1.5

>>> a.imag

0.5

>>> import cmath

>>> cmath.phase(a)

0.3217505543966422

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Basic Calculator

A Python shell can therefore replace your pocket calculator,
with the basic arithmetic operations +, -, *, /, % (modulo)
natively implemented:

>>> 7 * 3.

21.0

>>> 2**10

1024

>>> 8 % 3

2

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

WARNING!

Integer Division

>>> 3/2

1

Use floats

>>> 3 / 2.

1.5

>>> a = 3

>>> b = 2

>>> a / b

1

>>> a / float(b)

1.5

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Lists

Python provides many efficient types of containers, in which
collections of objects can be stored.

Lists

A list is an ordered collection of objects, that may have
different types. For example

>>> l = [1, 2, 3, 4, 5]

>>> type(l)

<type ’list’>

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Lists

accessing individual objects contained in the list:

>>> l[2]

3

Counting from the end with negative indices:

>>> l[-1]

5

>>> l[-2]

4

Warning Indexing starts at 0

>>> l[0]

1

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Lists

Slicing

>>> l

[1, 2, 3, 4, 5]

>>> l[2:4]

[3, 4]

Warning

Warning Note that l[start:stop] contains the elements with
indices i such as start ≤ i < stop (i ranging from start to
stop-1). Therefore, l[start:stop] has (stop-start) elements.

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Lists

Slicing syntax: l[start:stop:step]

All slicing parameters are optional:

>>> l

[1, 2, 3, 4, 5]

>>> l[3:]

[4, 5]

>>> l[:3]

[1, 2, 3]

>>> l[::2]

[1, 3, 5]

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Lists

The elements of a list may have different types:

>>> l = [3, 2+3j, ’hello’]

>>> l

[3, (2+3j), ’hello’]

>>> l[1], l[2]

((2+3j), ’hello’)

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Lists

Python offers a large panel of functions to modify lists, or query
them. Here are a few examples; for more details, see
http://docs.python.org/tutorial/datastructures.html#more-on-lists

Add and remove elements

>>> l = [1, 2, 3, 4, 5]

>>> l.append(6)

>>> l

[1, 2, 3, 4, 5, 6]

>>> l.pop()

6

>>> l

[1, 2, 3, 4, 5]

>>> l.extend([6, 7]) # extend l, in-place

>>> l

[1, 2, 3, 4, 5, 6, 7]

>>> l = l[:-2]

>>> l

[1, 2, 3, 4, 5]

Velasco and Perera Python in a Nutshell

http://docs.python.org/tutorial/datastructures.html#more-on-lists

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Lists

Reverse list

>>> r = l[::-1]

>>> r

[5, 4, 3, 2, 1]

Concatenate and repeat

>>> r + l

[5, 4, 3, 2, 1, 1, 2, 3, 4, 5]

>>> 2 * r

[5, 4, 3, 2, 1, 5, 4, 3, 2, 1]

Sort (in-place)

>>> r.sort()

>>> r

[1, 2, 3, 4, 5]

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Note

Methods and Object-Oriented Programming

The notation r.method() (r.sort(), r.append(3), l.pop()) is our
first example of object-oriented programming (OOP). Being a
list, the object r owns the method function that is called using
the notation ’.’
No further knowledge of OOP than understanding the notation
’.’ is necessary for going through this tutorial.

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Note

Discovering methods in ipython
tab-completion (press tab)

In [1]: r.

r.append r.extend r.insert r.remove r.sort

r.count r.index r.pop r.reverse

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Strings

s = ’Hello, how are you?’

s = "Hi, what’s up"

s = ’’’Hello,

how are you’’’# tripling the quotes allows the

s = """Hi,

what’s up?""" # the string to span more than one line

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Strings

Indexing strings

>>> a = "hello"

>>> a[0]

’h’

>>> a[1]

’e’

>>> a[-1]

’o’

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Strings

Substitution

>>> ’An integer: %i; a float: %f; another string: %s’ % (1, 0.1, ’string’)

’An integer: 1; a float: 0.100000; another string: string’

>>> i = 102.1

>>> filename = ’processing_of_dataset_%03d.txt’%i

>>> filename

’processing_of_dataset_102.txt’

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Challenge

5 seconds challenge

In ipython, create a list and check its methods with the
tab-completion feature

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Strings

Slicing

>>> a = "hello, world!"

>>> a[3:6] # 3rd to 6th (excluded) elements: elements 3, 4, 5

’lo,’

>>> a[2:10:2] # Syntax: a[start:stop:step]

’lo o’

>>> a[::3] # every three characters, from beginning to end

’hl r!’

BUT...

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Strings

You can’t change them in this way

In [1]: a = "hello, world!"

In [2]: a[2] = ’z’

TypeError Traceback (most recent call last)

/home/mvelasco/Curs_Python/<ipythonconsole> in <module>()

TypeError: ’str’ object does not support item assignment

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

PAY ATTENTION

NEXT SET OF SLIDES ARE
VERY IMPORTANT!!!

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Mutable and immutable types

Immutable types

integer

float

complex

boolean

strings

Mutable

Lists

Velasco and Perera Python in a Nutshell

32a

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Immutable types

Create an immutable element

>>> a=32

Velasco and Perera Python in a Nutshell

32a

b

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Immutable types

”copy” it

>>> a=32

>>> b=a

Velasco and Perera Python in a Nutshell

32

b

10a

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Immutable types

Change the original object

>>> a=32

>>> b=a

>>> a=10

>>> b

32

Velasco and Perera Python in a Nutshell

[32,10]l

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Mutable types

Create a mutable type

>>> l=[32,10]

Velasco and Perera Python in a Nutshell

[32,10]l

r

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Mutable types

”Copy” it

>>> l=[32,10]

>>> r=l

Velasco and Perera Python in a Nutshell

[32,5]l

r

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Mutable types

Change the original object

>>> l=[32,10]

>>> r=l

>>> l[1]=3

>>> r

[32, 3]

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Challenge

1 minute challenge

Create a list A, create a list B that contains A, copy the list B
into C, modify A and check C value

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Visited Types

Already seen types

boolean

integer

float

complex

string

list

Pending Types

Dictionary

Tuple

Set

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Dictionary

A dictionary is basically an efficient table that maps keys to
values. It is an unordered container:

>>> tel = {’emmanuelle’: 5752, ’sebastian’: 5578}

>>> tel[’francis’] = 5915

>>> tel

{’sebastian’: 5578, ’francis’: 5915, ’emmanuelle’: 5752}

>>> tel[’sebastian’]

5578

>>> tel.keys()

[’sebastian’, ’francis’, ’emmanuelle’]

>>> tel.values()

[5578, 5915, 5752]

>>> ’francis’ in tel

True

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Dictionary

A dictionary can have keys (resp. values) with different types:

>>> d = {’a’:1, ’b’:2, 3:’hello’}

>>> d

{’a’: 1, 3: ’hello’, ’b’: 2}

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Challenge

1 minute challenge

Are Dicts mutable?

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Tuples

The elements of a tuple are written between parentheses, or just
separated by commas:

>>> t = 12345, 54321, ’hello!’

>>> t[0]

12345

>>> t

(12345, 54321, ’hello!’)

>>> u = (0, 2)

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Sets

unordered, unique items:

>>> s = set((’a’, ’b’, ’c’, ’a’))

>>> s

set([’a’, ’c’, ’b’])

>>> s.difference((’a’, ’b’))

set([’c’])

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Challenge

2 minutes challenge

Are tuples mutable?

Which are the methods of tuples?

Are Sets mutable?

Which are de methods of sets?

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Before going on...

Built-in functions
abs() divmod() input() open() staticmethod()

all() enumerate() int() ord() str()

any() eval() isinstance() pow() sum()

basestring() execfile() issubclass() print() super()

bin() file() iter() property() tuple()

bool() filter() len() range() type()

bytearray() float() list() raw_input()unichr()

callable() format() locals() reduce() unicode()

chr() frozenset() long() reload() vars()

classmethod() getattr() map() repr() xrange()

cmp() globals() max() reversed() zip()

compile() hasattr() memoryview() round() __import__()

complex() hash() min() set() apply()

delattr() help() next() setattr() buffer()

dict() hex() object() slice() coerce()

dir() id() oct() sorted() intern()

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

if/then/else

If

>>> if 2**2 == 4:

... print ’Obvious!’

...

Obvious !

Blocks are delimited by indentation

a = 10

if a == 1:

print(1)

elif a == 2:

print(2)

else:

print(’A lot’)

A lot

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Conditional Expressions¶

if object:

Evaluates to False:

any number equal to zero (0, 0.0, 0+0j)

an empty container (list, tuple, set,
dictionary, ...)

False, None

Evaluates to True:

everything else (User-defined classes can
customize those rules by overriding the
special nonzero method.)

Tests equality, with logics:

>>> 1==1.

True

Tests identity: both sides are the same object:

>>> 1 is 1.

False

>>> a = 1

>>> b = 1

>>> a is b

True

For any collection b: b contains a

>>> b = [1, 2, 3]

>>> 2 in b

True

>>> 5 in b

False

If b is a dictionary, this tests that a is a key of
b.

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

for/range

Iterating with an index:

>>> for i in range(4):

... print(i)

...

0

1

2

3

But most often, it is more readable to iterate over values:

>>> for word in (’cool’, ’powerful’, ’readable’):

... print(’Python is %s’ % word)

...

Python is cool

Python is powerful

Python is readable

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

while/break/continue¶

Typical C-style while loop
(Mandelbrot problem):

>>> z = 1 + 1j

>>> while abs(z) < 100:

... z = z**2 + 1

...

Break out of enclosing for/while
loop:

>>> z = 1 + 1j

>>> while abs(z) < 100:

... if z.imag == 0:

... break

... z = z**2 + 1

Continue the next iteration of a
loop.:

a = [1, 0, 2, 4]

for element in a:

if element == 0:

continue

print 1. / element

1.0

0.5

0.25

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Advanced iteration

Iterate over any sequence
You can iterate over any sequence (string, list, keys in a dictionary, lines in a file, ...):

>>> vowels = ’aeiou’

>>> for i in ’powerful’:

... if i in vowels:

... print(i),

...

>>> message = "Hello how are you?"

>>> message.split() # returns a list

[’Hello’, ’how’, ’are’, ’you?’]

>>> for word in message.split():

... print word,

...

Few languages (in particular, languages for scientific computing) allow to loop over anything
but integers/indices. With Python it is possible to loop exactly over the objects of interest
without bothering with indices you often don’t care about.

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Keeping track of enumeration number

Common task is to iterate over a sequence while keeping track
of the item number.

Could use while loop with a counter as above. Or a for loop:

>>> words = (’cool’, ’powerful’, ’readable’)

>>> for i in range(0, len(words)):

... print(i, words[i]),

...

But Python provides enumerate for this:

>>> words = (’cool’, ’powerful’, ’readable’)

>>> for index, item in enumerate(words):

... print index, item,

...

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Looping over a dictionary

Use iteritems:

>>> d = {’a’: 1, ’b’:1.2, ’c’:1j}

>>> for key, val in d.iteritems():

... print(’Key: %s has value: %s’ % (key, val))

...

Key: a has value: 1

Key: c has value: 1j

Key: b has value: 1.2

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

List comprehensions

Natural math

k =
{
x2, x ∈ {0, 1, 2, 3}

}
>>> k=[x**2 for x in range(4)]

>>> k

[0, 1, 4, 9]

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Challenge

5 minutes challenge

Compute the decimals of π using the Wallis formula:

π = 2

∞∏
i=1

4i2

4i2 − 1

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Exceptions

Exceptions are raised by errors in Python:

In [1]: 1/0

ZeroDivisionError: integer division or modulo by zero

In [2]: 1 + ’e’

TypeError: unsupported operand type(s) for +: ’int’ and ’str’

In [3]: d = {1:1, 2:2}

In [4]: d[3]

KeyError: 3

In [5]: l = [1, 2, 3]

In [6]: l[4]

IndexError: list index out of range

In [7]: l.foobar

AttributeError: ’list’ object has no attribute ’foobar’

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Catching exceptions

try/except

In [8]: while True:

....: try:

....: x = int(raw_input(’Please enter a number: ’))

....: break

....: except ValueError:

....: print(’That was no valid number. Try again...’)

....:

....:

Please enter a number: a

That was no valid number. Try again...

Please enter a number: 1

In [9]: x

Out[9]: 1

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

Catching exceptions

try/finally

Important for resource management (e.g. closing a file)
In [10]: try:

....: x = int(raw_input(’Please enter a number: ’))

....: finally:

....: print(’Thank you for your input’)

....:

....:

Please enter a number: a

Thank you for your input

ValueError: invalid literal for int() with base 10: ’a’

There are many tricks with the exceptions, but they are out of
the scope of these slides

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Outline

1 Introduction
Why Learn Python
Python History
Installing Python
Python Resources

2 Working with Python
Workflow
ipython vs. CLI
Text Editors
IDEs
Notebook

3 Getting Started With Python
Introduction
Basic Types
Mutable and immutable
Controlling execution flow
Exception handling

4 Functions and Object Oriented Programming
Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Function definition

Function blocks must be indented as other control-flow blocks.

In [56]: def test():

....: print(’in test function’)

....:

....:

In [57]: test()

in test function

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Return statement

Functions can optionally return values.

In [6]: def disk_area(radius):

...: return 3.14 * radius * radius

...:

In [8]: disk_area(1.5)

Out[8]: 7.0649999999999995

Structure:

the def keyword;

is followed by the function’s name, then

the arguments of the function are given between brackets followed by a colon.

he function body ;

and return object for optionally returning values.

By default, functions return None.

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Parameters

Mandatory parameters (positional arguments)

In [81]: def double_it(x):

....: return x * 2

....:

In [82]: double_it(3)

Out[82]: 6

In [83]: double_it()

TypeError Traceback (most recent call last)

/Users/cburns/src/scipy2009/scipy_2009_tutorial/source/<ipython console> in <module>()

TypeError: double_it() takes exactly 1 argument (0 given)

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Parameters

Optional parameters (keyword or named arguments)

In [84]: def double_it(x=2):

....: return x * 2

....:

In [85]: double_it()

Out[85]: 4

In [86]: double_it(3)

Out[86]: 6

Warning

In [124]: bigx = 10

In [125]: def double_it(x=bigx):

.....: return x * 2

.....:

In [126]: bigx = 1e9 # Now really big

In [128]: double_it()

Out[128]: 20

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Parameters

More involved example implementing python’s slicing:

In [98]: def slicer(seq, start=None, stop=None, step=None):

....: """Implement basic python slicing."""

....: return seq[start:stop:step]

....:

In [101]: rhyme = ’one fish, two fish, red fish, blue fish’.split()

In [102]: rhyme

Out[102]: [’one’, ’fish,’, ’two’, ’fish,’, ’red’, ’fish,’, ’blue’, ’fish’]

In [103]: slicer(rhyme)

Out[103]: [’one’, ’fish,’, ’two’, ’fish,’, ’red’, ’fish,’, ’blue’, ’fish’]

In [104]: slicer(rhyme, step=2)

Out[104]: [’one’, ’two’, ’red’, ’blue’]

In [105]: slicer(rhyme, 1, step=2)

Out[105]: [’fish,’, ’fish,’, ’fish,’, ’fish’]

In [106]: slicer(rhyme, start=1, stop=4, step=2)

Out[106]: [’fish,’, ’fish,’]

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Parameters and mutability

5 minutes challenge

Check the behaviour of mutable and no mutable parameters
and determine if parameters are passed by reference or by value

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Parameters and mutability

5 minutes challenge, solution

>>> def try_to_modify(x, y, z):

... x = 23

... y.append(42)

... z = [99] # new reference

... print(x)

... print(y)

... print(z)

...

>>> a = 77 # immutable variable

>>> b = [99] # mutable variable

>>> c = [28]

>>> try_to_modify(a, b, c)

23

[99, 42]

[99]

>>> print(a)

77

>>> print(b)

[99, 42]

>>> print(c)

[28]

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Global variables

Variables declared outside the function can be referenced within
the function:

In [114]: x = 5

In [115]: def addx(y):

.....: return x + y

.....:

In [116]: addx(10)

Out[116]: 15

But..

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

This doesn’t work:

x=5

In [117]: def setx(y):

.....: x = y

.....: print(’x is %d’ % x)

.....:

.....:

In [118]: setx(10)

x is 10

In [120]: x

Out[120]: 5

This works:

x=5

In [121]: def setx(y):

.....: global x

.....: x = y

.....: print(’x is %d’ % x)

.....:

.....:

In [122]: setx(10)

x is 10

In [123]: x

Out[123]: 10

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Variable number of parameters

Special forms of parameters:

*args any number of positional arguments packed into a
tuple

**kwargs any number of keyword arguments packed into a
dictionary

In [35]: def variable_args(*args, **kwargs):

....: print ’args is’, args

....: print ’kwargs is’, kwargs

....:

In [36]: variable_args(’one’, ’two’, x=1, y=2, z=3)

args is (’one’, ’two’)

kwargs is {’y’: 2, ’x’: 1, ’z’: 3}

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Docstrings

Documentation about what the function does and it’s
parameters. General convention:

In [67]: def funcname(params):

....: """Concise one-line sentence describing the function.

....:

....: Extended summary which can contain multiple paragraphs.

....: """

....: # function body

....: pass

....:

In [68]: funcname ?

Type: function

Base Class: <type ’function’>

String Form: <function funcname at 0xeaa0f0>

Namespace: Interactive

File: /home/mvelasco/Curs_Python/.../<ipython console>

Definition: funcname(params)

Docstring:

Concise one-line sentence describing the function.

Extended summary which can contain multiple paragraphs.

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Functions are objects

Functions are first-class objects, which means they can be:

assigned to a variable

an item in a list (or any collection)

passed as an argument to another function

Example

In [38]: va = variable_args

In [39]: va(’three’, x=1, y=2)

args is (’three’,)

kwargs is {’y’: 2, ’x’: 1}

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Challenge

10 min challenge: Fibonacci

Write a function that displays the n first terms of the Fibonacci
sequence, defined by:
u0 = 1;u1 = 1
u(n+2) = u(n+1) + un

15 minutes challenge: QuickSort

Implement the quicksort algorithm, as defined by wikipedia

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Decorators as function wrapper

Function can be decorated by using the decorator syntax for
functions:

@mydecorator # (2)

def function(): # (1)

pass

def mydecorator(f)

return f()

def function(): # (1)

pass

function = mydecorator(function) # (2)

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Decorators as function wrappers

Example

def helloSolarSystem(original_function):

def new_function():

original_function() # the () after "original_function" causes original_function to be called

print("Hello, solar system!")

return new_function

def helloGalaxy(original_function):

def new_function():

original_function() # the () after "original_function" cause original_function to be called

print("Hello, galaxy!")

return new_function

@helloGalaxy

@helloSolarSystem

def hello():

print ("Hello, world!")

Here is where we actually *do* something!

hello()

Checkout the result of this structure

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Debug with decorators

Just for fun

def debug(f):

def my_wrapper(*args,**kwargs):

call_string = "%s called with *args: %r, **kwargs: %r " % (f.__name__, args, kwargs)

ret_val=f(*args,**kwargs)

call_string+=repr(ret_val)

if debugging:

print call_string

return ret_val

return my_wrapper

@debug

def recursive(k):

if k>1:

return k*recursive(k-1)

else:

return 1

debugging=False

recursive(3)

debugging=True

recursive(3)

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Scripts

First script

A sequence of instructions that are executed each time the script is
called.
Instructions may be e.g. copied-and-pasted from the interpreter (but
take care to respect indentation rules!).

message = "Hello how are you?"

for word in message.split():

print word

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Scripts

in Ipython, the syntax to execute a script is %run script.py. For example,

In [1]: %run test.py

Hello

how

are

you ?

In [2]: message

Out[2]: ’Hello how are you?’

From de command line

mvelasco->mvelasco-PC:~/Curs_Python\ $ python test.py

Hello

how

are

you ?

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Scripts

Standalone scripts may also take command-line arguments

in file.py:
import sys

print sys.argv

when executed

\ $ python file.py test arguments

[’file.py’, ’test’, ’arguments’]

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Modules

Importing objects from modules

In [1]: import os

In [2]: os

Out[2]: <module ’os’ from ’/ usr / lib / python2.6 / os.pyc ’>

In [3]: os.listdir(’.’)

Out[3]:

[’conf.py’,

’basic_types.rst’,

’control_flow.rst’,

’functions.rst’,

’python_language.rst’,

’reusing.rst’,

’file_io.rst’,

’exceptions.rst’,

’workflow.rst’,

’index.rst’]

Try to check how many functions are there in os with
tab-completion and ipython

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Modules

Alternatives to full import

Import only some functions

In [4]: from os import listdir

Or a shorthand

In [5]: import numpy as np

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Modules

Actually, all the scientific computing tools we are going to use
are modules:

>>> import numpy as np # data arrays

>>> np.linspace(0, 10, 6)

array([0., 2., 4., 6., 8., 10.])

>>> import scipy # scientific computing

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

My own module

"A demo module."

def print_b():

"Prints b."

print ’b’

def print_a():

"Prints a."

print ’a’

c = 2

d = 2

In [1]: import demo

In [2]: demo.print_a()

a

In [3]: demo.print_b()

b

Try this in ipython

In [4]: demo ?

In [5]: who

In [6]: whos

In [7]: dir(demo)

In [8]: demo. #tab-completion

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Modules

Warning:Module caching

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

‘main’ and module loading

A script and a Module

def print_a():

"Prints a."

print ’a’

if __name__ == ’__main__’:

print_a()

In [12]: import demo2

In [13]: %run demo2

a

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Input and Output

To write in a file:

>>> f = open(’workfile’, ’w’) # opens the workfile file

>>> type(f)

<type ’file’>

>>> f.write(’This is a test \nand another test’)

>>> f.close()

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Input and Output

To read from a file

In [1]: f = open(’workfile’, ’r’)

In [2]: s = f.read()

In [3]: print(s)

This is a test

and another test

In [4]: f.close()

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Input and Output

Iterating over a file

In [6]: f = open(’workfile’, ’r’)

In [7]: for line in f:

...: print line

...:

...:

This is a test

and another test

In [8]: f.close()

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Challenge

10 Minutes challenge

Write a script that reads a file with a column of numbers and
calculates the min, max and sum

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Challenge

10 minutes challenge

Write a module that performs basic trigonometric functions
using Taylor expansions

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

OS module: Operating system functionality

Directory and file manipulation

Current directory:
In [17]: os.getcwd()

Out[17]: ’/Users/cburns/src/scipy2009/scipy_2009_tutorial/source’

List a directory:
In [31]: os.listdir(os.curdir)

Out[31]:

[’.index.rst.swo’,

’.python_language.rst.swp’,

’.view_array.py.swp’,

’_static’,

’_templates’,

’basic_types.rst’,

’conf.py’,

’control_flow.rst’,

’debugging.rst’,

...

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

OS module: Operating system functionality

Make a directory

In [32]: os.mkdir(’junkdir’)

In [33]: ’junkdir’ in os.listdir(os.curdir)

Out[33]: True

Rename the directory:

In [36]: os.rename(’junkdir’, ’foodir’)

In [37]: ’junkdir’ in os.listdir(os.curdir)

Out[37]: False

In [38]: ’foodir’ in os.listdir(os.curdir)

Out[38]: True

In [41]: os.rmdir(’foodir’)

In [42]: ’foodir’ in os.listdir(os.curdir)

Out[42]: False

Delete a file:

In [44]: fp = open(’junk.txt’, ’w’)

In [45]: fp.close()

In [46]: ’junk.txt’ in os.listdir(os.curdir)

Out[46]: True

In [47]: os.remove(’junk.txt’)

In [48]: ’junk.txt’ in os.listdir(os.curdir)

Out[48]: False

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

os.path: path manipulations

os.path provides common operations on pathnames.

In [70]: fp = open(’junk.txt’, ’w’)

In [71]: fp.close()

In [72]: a = os.path.abspath(’junk.txt’)

In [73]: a

Out[73]: ’/Users/cburns/src/scipy2009/scipy_2009_tutorial/source/junk.txt’

In [74]: os.path.split(a)

Out[74]: (’/Users/cburns/src/scipy2009/scipy_2009_tutorial/source’,’junk.txt’)

In [78]: os.path.dirname(a)

Out[78]: ’/Users/cburns/src/scipy2009/scipy_2009_tutorial/source’

In [79]: os.path.basename(a)

Out[79]: ’junk.txt’

In [80]: os.path.splitext(os.path.basename(a))

Out[80]: (’junk’, ’.txt’)

In [84]: os.path.exists(’junk.txt’)

Out[84]: True

In [86]: os.path.isfile(’junk.txt’)

Out[86]: True

In [87]: os.path.isdir(’junk.txt’)

Out[87]: False

In [88]: os.path.expanduser(’~/local’)

Out[88]: ’/Users/cburns/local’

In [92]: os.path.join(os.path.expanduser(’~’), ’local’, ’bin’)

Out[92]: ’/Users/cburns/local/bin’

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Other OS services

Running an external command

In [3]: os.system(’ls *.tex’)

commondefs.tex CursP_1.tex CursP_3.tex

CursP_4.tex format.tex header.tex

Walking a directory

In [4]: for dirpath, dirnames, filenames in

os.walk(os.curdir):

...: for fp in filenames:

...: print os.path.abspath(fp)

...:

/home/mvelasco/Dropbox/Curs_Python/CursP_3.log

/home/mvelasco/Dropbox/Curs_Python/CursP_4.out

/home/mvelasco/Dropbox/Curs_Python/syllabus.odt

/home/mvelasco/Dropbox/Curs_Python/format.tex

/home/mvelasco/Dropbox/Curs_Python/CursP_3.pdf

/home/mvelasco/Dropbox/Curs_Python/tags

/home/mvelasco/Dropbox/Curs_Python/CursP_3.vrb

glob: Pattern matching on files

In [5]: import glob

In [6]: glob.glob(’*.tex’)

Out[6]:

[’format.tex’,

’CursP_4.tex’,

’header.tex’,

’CursP_1.tex’,

’CursP_3.tex’,

’commondefs.tex’]

sys module: system-specific information

In [8]: import sys

In [9]: sys.platform

Out[9]: ’linux2’

In [10]: sys.version

Out[10]: ’2.7.3 (default, Aug 1 2012, 05:14:39) \n[GCC 4.6.3]’

In [11]: sys.prefix

Out[11]: ’/usr’

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Object-oriented programming

OOP

We are not going to use OOP in this course, but we provide
some snippets of code just to know the structure of class
declaration

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Object-oriented programming

Class Declaration

>>> class Student(object):

... def __init__(self, name):

... self.name = name

... def set_age(self, age):

... self.age = age

... def set_major(self, major):

... self.major = major

...

>>> anna = Student(’anna’)

>>> anna.set_age(21)

>>> anna.set_major(’physics’)

Class extension

>>> class MasterStudent(Student):

... internship = ’mandatory, from March to June’

...

>>> james = MasterStudent(’james’)

>>> james.internship

’mandatory, from March to June’

>>> james.set_age(23)

>>> james.age

23

Velasco and Perera Python in a Nutshell

Introduction
Working with Python

Getting Started With Python
Functions and Object Oriented Programming

Defining New Functions
Decorators
Writing Scripts and New Modules
Input and Output
Standard Library
Object-Oriented Programming

Velasco and Perera Python in a Nutshell

	Introduction
	Working with Python
	Getting Started With Python
	Functions and Object Oriented Programming

